All Articles

Greater need for vitamin B-12

February 1, 2006

Middle-aged and elderly women’s need for Vitamin B-12 is with great certainty 2,5 times higher than previously believed. A daily vitamin tablet is often not enough.

How is the need for a vitamin determined? Earlier it was determined based on how much is necessary to avoid acute deficiencies. This is sometimes still the case. For example, the current recommendations for vitamin C are still based on a World War II study on 20 English military objectors. Half of them came down with scurvy and two were close to death. But this study found that scurvy can be avoided with 12 mg vitamin C per day.

This kind of research is brutal by today’s standards. But it is also antiquated because it does not take other deficiency symptoms into account, including those which arise after longer periods and are not coupled with bruising of the skin, brittle bones, paralyses, and other acute symptoms. Today, instead of merely recording with a study participant becomes deathly ill, we follow the processes that the vitamins in question are involved in and determine whether or not they function as they should. This methodology was used by the American, Mark Levine when he proved that our need for vitamin C is closed to 200 mg per day than the normally recommended 60 mg. If one makes due with 60 mg it is believed that the vitamin C dependant reactions become slow and that there is an significantly increased risk of cardiovascular disease and cancer.

Of current interest, there is news regarding the need for vitamin B12. The current recommendation in England has been set to 1 microgram per day. A Danish study has recently shown that the need for vitamin B12 is six times as much (6 micrograms). This was determined in a study of 98 Danish women with an average age of 60. Such a large need meanwhile created a problem; the women typically only received 4.6 micrograms via their diet.

Even though they supplemented their intake with a normal vitamin pill (1 microgram B12), half of them received too little vitamin B12. Stronger pills are needed.

Increasing recommendations
For the last 50 years B12 status has been determined by measuring the blood’s B12 content. Findings in recent years have shown that a “normal” B12 value does not necessarily mean that there is enough. Even with a normal B12 value, build op of metabolism products which B12 normally removes can occur (these include homocysteine and MMA, otherwise known as methylmalonic acid). Therefore the amount of these substances present is measured when trying to determine whether or not there is a deficiency.

Recently a third indirect measure for B12 deficiency has been put into focus: holotranscobalamin, a B12 containing protein, seems to be able to replace the above-mentioned method and may even be more sensitive to B12 deficiency. It is very important to get enough of this protein. It is responsible for delivering B12 to the cells, almost like the paperboy who delivers the paper to your door. Without the paperboy, there is no paper.

The Danish study showed that the values for Holotranscobalamin, MMA, and homocysteine no longer indicated deficiency only when a B12 intake of over 6 micrograms per day was achieved. If B12 intake is less than 6 micrograms, there is sand in the B12-works.

The researchers conclude with conviction:
”…our results, together with those of others, strongly suggest that the RDA of 2.4 micrograms/day should be increased.”
This can also been said about many other vitamins. Experience from recent years indicates that the recommendations for not only vitamin B12, but also vitamins C and E and the minerals selenium, chromium, and magnesium, should also be increased, and in some cases greatly increased. Increased intake of many of the other B vitamins as well as iodine should also be considered.

This is especially true about vitamin D, on which we at the Danish Vitality Counsel have focused. The recommended daily dosage of vitamin D should be doubled for those of us who live in northern climes.

The official recommendations have as a whole not followed developments in research, even though there are strong arguments for new recommendations. According to some, there is need for more evidence. But this is contrary to the supposition that new recommendations could prevent serious chronic disease.

The dilemma is strengthened by the fact that it is difficult or impossible to get higher doses of vitamins and minerals though our modern diet. Some suggest that it might be possible with a Stone Age diet, but we surely will not have another Stone Age.

By: Vitality Council

References:
1. Mustafa Vakar Bor et al. A daily intake of approximately 6 {micro}g vitamin B-12 appears to saturate all the vitamin B-12-related variables in Danish postmenopausal women. Am J Clin Nutr. 2006 Jan;83(1):52-8.
2. Zouë Lloyd-Wright et al. Holotranscobalamin as an Indicator of Dietary Vitamin B12 Deficiency. Clinical Chemistry 49: 2076-2078, 2003;10.1373/clinchem.2003.020743.

www.ajcn.org
www.clinchem.org
www.iom.dk

Lipoic Acid. Perhaps The Medicine Of The Future?

January 25, 2006

Lipoic acid is a simple fatty acid which is produced in all human cells. It is considered to be the ideal antioxidant and it may actually be highly beneficial against diabetes, neurological damage, and more. However, it is banned in Denmark.

Is lipoic acid the medicine of the future? There are many who believe this is so. One of the worlds leading experts in the field of antioxidants, Lester Packer of Southern California University, has emphasized that lipoic acid is the ideal antioxidant and a recent article by Polish researchers cautiously comes to the same conclusion.

Packer maintains that “from a therapeutic viewpoint, few natural antioxidants are ideal.” He continues by indicating that an ideal antioxidant should fulfil many demands: It should be absorbable by the intestines, occur in a form useful to the cells and have many antioxidant effects (including interaction with other antioxidants) in both cell membranes and the organism’s aqueous phase. It also must be completely non-toxic. Packer believes that lipoic acid is unique among antioxidants because it fulfils these demands. Lipoic acid is a potentially very effective medicine in many situations where free oxygen radicals are implicated.

Lipoic acid is a small sulphur containing fatty acid. It was discovered in 1950, but its special anti-oxidative properties were first noticed during the 1980’s. It is a very strong antioxidant, considerably stronger than vitamin C. It is also both fat and water soluble, which means that it can enter and have effects both outside and inside the cells. When other antioxidants such as vitamins E and C are used up, they can be “recharged” by lipoic acid so that they can be used again. It is also necessary for the cells’ metabolism and for a period it was considered to be a vitamin, but when laboratory animals did not suffer damage from lipoic acid deficiency, this idea was dropped.

Diabetes and nerve damage
The question of whether or not it is a good idea to take lipoic acid supplements should be addressed. The previously mentioned Polish researchers analysed some of the as yet very limited knowledge in this area and found that lipoic acid may be especially interesting for diabetics. Studies on animals with type II diabetes have shown strong improvement of their diabetes with lowered blood sugar levels and better utilization of their bodies own insulin with lipoic acid supplements. Many studies have shown that lipoic acid improves nerve function in diabetics with nervous inflammation.

Just as interesting, lipoic acid may be an effective weapon against the protein damage caused by heightened blood sugar. In a process called protein oxidation the proteins change structure in a way which is similar to what happens when an egg is boiled. This oxidation is an important part of the explanation for diabetics’ tendency to get cataracts, where the lens of the eye becomes clouded. In animal studies this is counteracted by lipoic acid.

The apparent nerve protective properties have lead to studies in Alzheimer’s treatment. In two studies it was found that the disease was halted by lipoic acid, but these results should be considered as provisional. The same result has been found in studies of Parkinson’s disease.

Does lipoic acid prevent cancer? The Polish researchers are uncertain. Their tissue studies indicate that small doses promote growth, while large doses inhibit growth. Dare we claim that this effect speaks for supplementation? We produce small doses of lipoic acid without help.

Only about 1,000 articles on lipoic acid can be found in the medical database, Medline. Research is still in its infancy. Even so, entering lipoic acid into Google gives over two million links (search “lipoic acid”).

By: Vitality Council

Reference:
Bilska A et al. Lipoic acid – the drug of the future? Pharmacological Review 2005;57:570-77.

Selenium, A Potent Substance Against Cancer

January 18, 2006

Studies from all angles support the idea that selenium works against cancer. Even though there is need for more research, an optimal dose can be suggested.

Selenium prevents cancer. This is common knowledge which is only awaiting conclusive confirmation. It received recognition when, in 1996, an American researcher (Clark) showed in a randomised study that the frequency of cancer fell by 38%, and that the fatality rate of those with cancer fell by 50%, in participants who received daily supplement of 200 micrograms selenium.

The supposition that selenium is preventative for cancer is in fact much more extensively backed. This has been shown by a leading selenium expert, Margret Rayman from the University of Surrey in England, in a thorough, but also complicated, summary. She has also illuminated who selenium prevents cancer and, even more importantly, how much is needed.

Rayman reviews the many geographical studies that have, since the 1960’s, consistently shown that the populations who received the least amount of selenium also had the highest cancer rates. Animal studies are also discussed. If one gives selenium to a male dog, not only is there less damage to the DNA of prostate cells, but the damaged cells that remain also die normally instead of living on as cancer cells.

A certain pattern emerges when one looks at studies where the blood concentration of selenium is compared to the cancer rate in groups of people. In a French study of this type from 2005, the death rate from cancer after nine years was four times greater in the 25% of the study-group who received the least selenium than in those who received the most selenium. Typically the French receive as little selenium in their diets as the British. Many studies from many countries have shown similar results for lung cancer (a 26% lower risk of cancer was reported in those with diets rich in selenium), oesophagus cancer, stomach cancer, and not in the least, prostate cancer as well as possibly cancer of the large intestine.

How much is enough
The best evidence can always be found in randomised studies where neither the patients nor the doctors know who receives what. A Chinese study of this type has shown that selenium has an especially effective against liver cancer. As mentioned before, Clark’s study had similar results. It is intriguing that, even though Americans receive an average of 200 micrograms more selenium daily than us, an additional 200 micrograms was beneficial to most. The effects were nevertheless minimal in those who received the most selenium beforehand. These individuals already received close to the optimal dose. But third of the population who received the least beforehand, had their cancer risk halved, and their prostate cancer risk decreased by 86%, after taking supplementary selenium.

Typical Europeans receive too little selenium while Americans receive double as much and Japanese receive almost three times as much. It has become apparent that 70 micrograms of selenium is needed in the daily diet to maintain levels of the selenium based antioxidant GSHpx in the body. The Japanese and most Americans receive this amount in their diets while we do not. But why is their cancer risk reduced when they receive supplementary selenium? The reason cannot be GSHpx and may not even be the anti-oxidizing effects alone.

Rayman examines many possible explanations. One is that high doses of selenium lead to the formation of the simple selenium compound methylselenol; which can kill cancer cells, counteract the formation of blood vessels (which the cancer cells need to survive) and can inhibit cancer in other ways. But selenium is naturally an antioxidant, an immune system stimulant, an activator for cancer inhibiting genes, an inhibitor for growth factors, etc. There is not one, but many, mechanisms of action.

Unchecked amounts of selenium should not be taken. Studies indicate that sufficiently high doses of selenium can increase the risk of cancer as much as insufficient amounts. Clark’s study, as well as others, suggests that a daily supplement of 200 micrograms is optimal.

The reward can be large, but more research is needed. Currently a large clinical trail (called SELECT) is being undertaken in the U.S.A., but a study in the more selenium poor Europe would be better. Rayman believes that such a study should be undertaken. But who wants the placebo!?

By: Vitality Council

References:
1. Rayman M P. Selenium in cancer prevention: A review of the evidence and mechanism of action. Proceedings of the nutrition society. 2005;64:527-42.
2. Clark LC et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer study group. JAMA 1996;276:1957-63.
3. Akbaraly NT et al. Selenium and mortality in the elderly: Results from the EVA study. Clin Chem. 2005;51:2117-23.

www.cabi-publishing.org/Journals.asp
jama.ama-assn.org
www.clinchem.org
www.iom.dk

Vitamins against aging

January 9, 2006

The need for many vitamins increases with age. A deficiency can be compared to radiation exposure, which causes mutations, decreased energy production, cancer, and age-related changes in the body, according to one of the World’s leading nutrition scientists.

When Bruce Ames was 70, President Clinton surprised him with U.S.A.’s highest scientific recognition, The National Medal of Science, for his research in nutrition, cancer, and aging.

Today he is 77, but still an almost incomprehensibility active researcher and professor at the famous Berkeley University in California. He is also the man behind the world renown Ames test, a lightning fast method to find out whether a specific chemical can cause mutations, and thereby cancer.

This introduction shows that Ames it a researcher to be listen to, and therefore we have decided to discuss one of Ames’s latest and most important scientific articles.

The article was published in a periodical for the European organization of molecular biologists (EMBO reports). It describes how it is possible to reduce the tendency for cancer and aging by taking more than the recommended dose of diverse vitamins and other important substances.

How does it do this? In his study Ames found that deficiencies of vitamins C, E, B6, and B12 as well as of folic acid and zinc can have exactly the same effect on cells as radioactivity. This means that such deficiency causes mutations, for example as a result of breakage of the chromosomes.

Folic acid deficiency causes such breakage because it leads to the introduction of a wrong substance (uracil) in uncountable places along the DNA molecules. These mutations affect the cells the same way as a virus affects a computer. In the worst cases, the system beaks down.

But deficiency does not only lead to mutations. Another result is weakening of the energy producing mitochondria, otherwise known as the cells’ power plants. In order for the mitochondria to function, they must have access to certain enzymes, which can be regarded as the power plant’s machinery. The enzymes work together so that the product from one “machine” is processed further by the next in a chain of reactions which result in the conversation of oxygen and hydrogen into water, and the production of energy. But where do the enzymes come from? Without the necessary building blocks they do not exist at all!

Ames has among other things proven that deficiencies of zinc or the B vitamins biotin and pantothenic acid weaken the fourth reaction in this chain of reactions. They are the building blocks of the “machines” which carry out this step in the process. Not only is the production of energy reduced by such deficiency, but oxygen is also insufficiently converted to water. As a result the mitochondria empty free radicals into the surrounding cell where they can cause mutations, cancer, and weakness.

More Energy
Why does Ames believe that it is necessary to take more vitamins than recommended? This is as a result of the third and last point in his thought process. It regards the consequence of the uncountable mutations which by the aforementioned methods unavoidably arise during ones life. These mutations cause the cells to produce less effective enzymes that bind less effectively to the vitamins which they need to aid their function. Ames maintains that this poor binding can be overcome simply by increasing the amount of vitamins. This makes the enzymes work again.

A particular problem in this regard is the weakening of the mitochondria which occurs with age. Without energy, nothing functions within the cell and the degeneration of the mitochondria is central to what we call aging. But Ames emphasizes that it is possible to make old rats faster by giving them supplements of the two vitamin-like substances lipoic acid and carnitine.

Both substances are important intermediates for energy production in the mitochondria. With age they bind poorly to the enzymes which cause the mitochondria to function poorly. But this poor binding can also be overcome with supplements. As well as making the rats faster it was possible to measure that their mitochondria once again functioned normally. Clinically such treatment has been able to result in improvement in people with mild Alzheimer’s.

The unique thing about Ames is that his arguments are based on biochemistry. This means that he refers to elementary chemical reactions which are demonstrable in the organism. Many others base their views of more or less uncertain clinical trails, sometimes without knowledge of the biochemistry behind them. It might not be coincidental that The Nobel Prise in medicine typically is given to a biochemist.

By: Vitality Council

References:
1. Bruce N Ames. Increasing longevity by tuning up metabolism. EMBO reports 2005;6:S20- S23.
2. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: Partial reversal by feeding acetyl-L-carnitine and/or R-a-lipoic acid. J. Liu et al. Proc Natl Acad Sci USA.2002;99:2356-61.
3. B N Ames et al. High-dose vitamins stimulate variant enzymes with decreased coenzyme-binding affinity (increased Km): Relevance to genetic diseases and polymorphisms. Am J Clin Nutr 2002;75:616-58.

Vitamin D Prevents Cancer

December 30, 2005

A new and much discussed analysis, has shown that nearly every other cancer case can be prevented by D vitamin, if everyone is getting the suffient dosage, which almost no one is.

It has now been proven that the frequency of cancer can be reduced dramatically by increasing the population’s vitamin D intake.

This is the claim of the American researcher Cedric Garland, who is a professor of epidemiology at the University of Southern California, San Diego. He is behind the largest analysis of vitamin D research and cancer to date. 63 studies from 1962-2004 were analysed.

As a whole they strongly indicate that if the population’s intake of vitamin D is set up to 1,000 units per day, the frequency of colon cancer would be halved while the number of breast cancers and ovarian cancers would be reduced by a third. The 1,000 units of vitamin D (25 micrograms) would be, with certainty, without side effects. This is the same as five times the normally recommended dose, which only few receive.

Garland, who has studied vitamin D for 25 years, is very certain of his results. In a statement given to the BBC and The Independent he declared that there is now such an overwhelming amount of indications from the best observational studies, that governmental action is warranted.

It is worth noticing that these internationally respected media concerns both came with detailed reports, which also were followed by a leading editorial in The Independent. The study itself was published in the February 2006 issue of the American Journal of Public Health. The results were also published beforehand online in an extensive statement on the university’s (UCSD) official homepage.

Garlands interest for vitamin D was awakened when he noticed in the 1980’s that the risk of colon cancer and breast cancer in the northern United States was double that of the risk in the Southern states. He and others started a 12 year study, which lead to a hypothesis that the reason behind this phenomenon is sunlight’s ability to create vitamin D in the skin. This theory has subsequently been tested in many ways. It also fits with the increased cancer frequency in cities, when air pollution containing sulphur dioxide blocks the vitamin D producing short ultraviolet solar radiation.

This also fits with the diet and cancer studies on workers in Chicago and with the low frequency of breast cancer in Japan, where though there is little sunlight, the diet is largely fish based. Fatty fish are just about the only regular source of vitamin D outside of the summer months in Japan, Chicago, and Northern Europe. Additionally, the theory fits well with the fact that the many people, who for genetic reasons utilize vitamin D poorly, are strongly overrepresented among those who suffer cancers of the colon, breast, prostate, and more.

More and more indications
The faithful subscribers to this newsletter may remember our accounts of the studies of the last year which have shown that women with low vitamin D status have much more frequently lumps in their breasts than others. This is a relationship which fits with a higher risk of cancer.

They may also remember that an American (as well as a large Norwegian) study showed that the possibility of beating many cancer forms is best when the cancer is found during the summer, when vitamin D status is highest.

This indicates that the vitamin not only prevents cancer, but also inhibits cancer growth. Concordantly with Garland’s claim, African Americans have a lower chance of recovery form breast cancer than Anglo Saxon individuals. This may be due to a reduced vitamin D status brought on by the reduced ability to absorb vitamin D which comes with dark skin colour.

These results and others are strengthen by animal studies where it has been proven that vitamin D promotes cell death in abnormal cells in the process called apoptosis and has a general dampening effect on cell growth. This last principle is utilized by psoriasis salves, which contain a vitamin D – like substance which inhibits the overwhelming growth and lack of cell maturation which characterises this skin disease.

The optimal daily vitamin D dose, especially during the winter months between October and May, is according to Garland about 1,000 units (or 25 micrograms) per day. This recommendation is based on a study from October 2005. The 1,000 units lead to a concentration of the vitamin D precursor 25-OH-vitamin D of about 80 nmol/l (nanomol per litre), which Garland found to lead to the lowest risk of colon cancer.

Much also indicates that Garland is correct that vitamin D supplements could save thousands of lives. If this is the case, than any media claim that we get superfluous vitamins is contrary to public health.

By: Vitality Council

References:
1. Garland CF et al. The Role of Vitamin D in Cancer Prevention. Am J Public Health. 2006;96(2):9-18. 2005 Dec 27; [Epub ahead of print].
2. Gorham ED et al. Vitamin D and prevention of colorectal cancer. J Steroid Biochem Mol Biol. 2005 Oct;97(1-2):179-94. Epub 2005 Oct 19.
3. Garland CF et al. Serum 25-hydroxyvitamin D and colon cancer: eight-year prospective study. Lancet. 1989 Nov 18;2(8673):1176-8.
4. Jeremy Laurance, Health Editor. Revealed: the pill that prevents cancer. The Independent 28.12.05.

Vitamin E May Be Diabetic’s Saviour

December 20, 2005

About one out of every two diabetics has a five times larger than average risk of dying from heart disease. This risk can be cut in half by vitamin E. This is a well justified theory which is now being tested in a large Israeli study.

It is well known that the heart’s of diabetics become easily atherosclerotic, often causing them to die due to blood clots in the heart. Therefore, health officials work hard to combat atherosclerosis in diabetics. For example, diabetics are encouraged to take cholesterol reducing medicine, even when their cholesterol levels are very low. Diabetics’ blood pressure should also be low.

If one believes the Israeli researcher, Andrew Levy, the lives of even more diabetics can be saved by taking 400 units of vitamin E daily. Levy’s theory is now being tested in Israel in a large randomised study with 5,000 middle aged diabetics. Half of them will receive vitamin E for the next four years while the other half will not. If it goes as is hoped, the result will have enormous significance for public health.

It is optimistic to implement such an expensive study with vitamin E. As every (Danish, ed.) TV watcher knows, vitamin E doesn’t work against anything. Why would Levy and his co-workers from the Israeli Technion Technical Institute, where many Nobel prise winners can be found, go against the flow?

The explanation involves an antioxidant which few non-experts know of. It is called haptoglobin and is a protein which is created in the body. Haptoglobin binds the blood’s colouring agent, the iron rich haemoglobin, if it becomes detached from the red blood cells. In this way it prevents iron poisoning and therefore against overloading of free radicals in a long list of conditions where red blood cells die.

Disregarded effects of vitamin E
Levy and his co-workers have shown time and time again that haptoglobin works as an antioxidant. There is more to the story; haptoglobin is found in two forms, which are not equally effective antioxidants. Type 1 haptoglobin works much better than type 2. If one has type 2 haptoglobin (like 40% of the Israeli diabetics) the risk of death due to heart disease is five times higher than normal! In other words, a very large part of diabetics’ high death rate due to heart disease is because one out of every two of them has an insufficiency defence against oxidation because of ineffective haptoglobin.

The logical consequence of this enormous difference is, according to Levy, that the poorly protected diabetics with type 2 haptoglobin should take supplementary antioxidants. This is where the vitamin E study comes in. Vitamin E should be able to help. On the other hand, if it does help, why have other studies with vitamin E not previously shown this effect?

Levy believes that this is presumably because they have not been analysed with this effect in mind. He studied serum from a large sample of the ca. 10,000 participants in the Canadian HOPE study, where atherosclerotic participants received 400 units of vitamin E daily. The people behind the HOPE study found no effect of the vitamin E. But what about the 1,000 diabetics in the study? About a year ago, Levy proved that vitamin E reduced the risk of heart disease by 50% in the diabetic participants who had type 2 haptoglobin.
This surprising result was hidden in the HOPE study and was apparently unknown. This is quite educational. If the most threatened diabetics’ very high risk of heart disease can be halved with a cheap, harmless, vitamin E pill, the signification is very large.

Until 2010 we only have these results. There are no other results to turn to. It is not even possible to find out which kind of haptoglobin you have. If you wish to prevent heart disease, you have to do it in the dark. It is however risk free.

By: Vitality Council

References:
1. Andrew P. Levy et al. The Effect of Vitamin E Supplementation on Cardiovascular Risk in Diabetic Individuals With Different Haptoglobin Phenotypes. Diabetes Care 27:2767, 2004.
2. Levy AP et al. Strong Heart Study. Haptoglobin phenotype is an independent risk factor for cardiovascular disease in individuals with diabetes: The Strong Heart Study. J Am Coll Cardiol. 2002 Dec 4;40(11):1984-90.
3. Suleiman M, et al. Haptoglobin polymorphism predicts 30-day mortality and heart failure in patients with diabetes and acute myocardial infarction. Diabetes. 2005 Sep;54(9):2802-6.
4. A survey of the study can be found at Clinical Trials.gov: www.clinicaltrials.gov/ct/gui/show/NCT00220831.

care.diabetesjournals.org
www.cardiosource.com/jacc/index.asp
www.clinicaltrials.gov/ct/gui/show/NCT00220831
www.iom.dk

Vitamin E Lowers Cholesterol Levels in Diabetics

December 13, 2005

There are at least eight different kinds of Vitamin E, but typically we only get one of those in vitamin pills. One of the other kinds prevents arteriosclerosis, while a third kind has been shown to effectively lower the blood cholesterol levels of diabetics.

When you buy vitamin E in pill form, you almost always get alpha-tocopherol. Alpha-tocopherol (natural and sometimes, unfortunately, synthetic) has also been used exclusively in almost all of the studies on vitamin E’s effectiveness against cardiovascular disease.

There are other tocopherols than alpha-tocopherol. They all share the same basic chemical structure but differ in their side chains. Tocopherol can come in alpha, beta, gamma, or delta forms depending on the position of its side chains. Apha-tocopherol, the type used in vitamin pills, has the greatest effect as a vitamin.

Tocotrienols, another vitamin E form, are less well known. They differ from the other forms by having three double binds in their side chain. They are found in palm oil as well as grains such as oats, barley, rice, and corn. Tocotrienols can also be found in alpha, beta, gamma, and delta forms.

These tocotrienols are coming into the spotlight. For many years, on the basis of animal studies and small studies using humans, there has been the suspicion that they are effective against atherosclerosis. For example, ten year ago an American randomised study with 50 test subjects showed that tocotrienols from palm oil definitely counteracted atherosclerosis of the carotid arteries. Unfortunately no follow up study has been preformed.

Recently an Indian randomised study has surfaced. It shows that tocotrienols from rice sources sink the cholesterol concentration in the blood of type 2 diabetics (old age diabetes). In this study 19 diabetics received placebos for a period of 60 days. Before or after this 60 period they received, for a similar period, capsules containing rice with high concentrations of tocotrienols (each participant received 3 mg tocotrienol per kilo bodyweight per day). The study was designed so that no one knew which participants received which pill at what time until the study was completed.

Unsolved problems
The results showed that the tocotrienols reduced the total cholesterol levels of the participant’s blood by no less than 30%. Even more encouraging, the “bad” cholesterol, (LDL cholesterol) which can become oxidised and cause atherosclerosis, fell by an astonishing 42%. This effect is just as pronounced as seen with traditional cholesterol lowering medication, the so called statins.

It seems that anyone who can get a hold of tocotrienols is free from seeking traditional cholesterol lowering treatment. But before this is certain and becomes common practice, a few things should be further looked analysed.

First and foremost, can the results of the aforementioned study be reproduced? As stated earlier tocotrienols were effective against atherosclerosis in the carotid arteries, but in the study which showed this effect, the participants’ total cholesterol was unchanged! Tocotrienol does not always lower cholesterol. But does it always counteract atherosclerosis? At best the answer is maybe, we don’t know. After looking at the results of the two studies we can hypothesise that the differences in their results could be the result of the different tocotrienol blends used. The first study used a palm oil extract while the second used a rice source. The differences between alpha, beta, gamma, and delta tocotrienol is sufficient, their effects should differ.

Other things which we understand even less could also play a role. The likely cholesterol lowering effect of the rice tocotrienol should also be tested for possible side effects and the results of this should be compared with the side effects of traditional cholesterol medicine. A big job awaits researchers.

Meanwhile, the studies have shown with certainty that (apart from that oatmeal and brown rice are healthy) we are not finished with vitamin E or, more to the point, the E vitamins. There are many of them, and they have different effects. Their potential is very promising.

By: Vitality Council

References:
1. Tomeo AC, Geller M, Watkins TR, Gapor A, Bierenbaum ML. Antioxidant effects of tocotrienols in patients with hyperlipidemia and carotid stenosis. Lipids. 1995 Dec;30(12):1179-83.
2. Qureshi AA, Salser WA, Parmar R, Emeson EE. Novel tocotrienols of rice bran inhibit atherosclerotic lesions in C57BL/6 ApoE-deficient mice. J Nutr. 2001 Oct;131(10):2606-18.
3. Baliarsingh S, Beg ZH, Ahmad J. The therapeutic impacts of tocotrienols in type 2 diabetic patients with hyperlipidemia. Atherosclerosis. 2005 Oct;182(2):367-74. Epub 2005 Apr 20.

www.aocs.org/press
www.nutrition.org
www.athero.org
www.iom.dk

False Propaganda Against Vitamins

November 30, 2005

A frightening warning in an article in the Danish newspaper, Ekstra Bladet, claims that people will get sick from taking Vitamin B and injure their hearts by consuming Vitamin E. These claims are twisted and false.

Condescending evaluations of vitamin supplements are quite common. They rarely come from experts, but often from people who know something about something else and therefore think they know something about everything.

As a rule, it is stated that the vitamins only provide expensive urine and do not help against anything at all. Sometimes this message is spread rather too thickly.
The vitamins are poisonous! As the other day in a large published article in the newspaper Ekstra Bladet: You get sick from nutritional supplements, the headline stated. Further down, it became clear that you would not only get sick. You would die!

Whenever these kinds of statements appear, people get scared. They cannot imagine that anyone will write anything in Ekstra Bladet if it is not true. But unfortunately there are writers who don’t bother with that. This is evident from the mentioned article, which is mainly based on two gross, false claims. Here we comment on them in reverse order.

“The last new thing was the B vitamin folic acid, which should also be able to protect against heart disease. Recently, a large Norwegian study showed that folic acid did not make users less prone to heart disease. On the contrary, they got sick from the pills”.

Is that right? No. It is wrong. In the Norwegian randomised trial (it was called NORVIT), approx. 900 people who had had blood clots in the heart were supplemented with 0.8 mg of folic acid per day for 3-4 years. The table shows the relative mortality and incidence of heart clots in those who received folic acid and those who received inactive pills (placebo.)

……………………..………..……Folic acid……Placebo
Blood clot in the heart…….57,9…………….59,2
Total mortality………………….28,7…………….31,7

As seen, the overall mortality was 9% lower if folic acid was given instead of placebo. The risk of blood clots was also reduced. How does that agree with the fact that people “got sick (meaning heart disease) from the pills”? The answer is that it is not true. Admittedly, none of the differences were statistically significant. It was a trend. But that is not the same as the study showing the opposite of the trend.

And now to the first claim. It is about vitamin E. It was claimed that vitamin E should protect against heart disease, it says, but “when the major scientific studies came, it turned out that it… gave… heart failure, bleeding and an increased risk of dropping dead”.

Heart failure. That claim must come from the HOPE-TOO study, the only one of the many studies with a total of well over 100,000 participants in which heart failure has been found to be caused by vitamin E treatment.

4,000 people with severe atherosclerosis participated in HOPE-TOO. Those who received vitamin E (400 IU/day) had slightly more often weakened heart. The difference was statistically uncertain, i.e. that it could be accidental. The absence of heart failure in all the other studies suggests the same.

On the other hand, a slightly reduced risk of lung cancer was found in HOPE-TOO, and it was reliable. But since this has not been found in other studies either, it is unreasonable to mention it. It could be random anyway.

Another peculiarity of HOPE-TOO was that even though the participants were given 25 times the recommended amount of vitamin E, it could not be seen in the blood tests. On average, the participants had very little vitamin E in their blood, despite the large supplements. The concentration in the blood (17.6 mmol/l) was even at the lower end of the normal range (12-42 mol/l). Either the participants have not taken the vitamins, or they have e.g. taken them on an empty stomach so that they were not absorbed from the intestine. So where does the vitamin E study end up?

In other words: Here a single, guaranteed misleading, result from one small experiment is misused – as “fact”. It is cheating and distortion. And for the record: That you should start bleeding, let alone die from vitamin E in the mentioned doses, is out of thin air. In contrast, the vitamin prevents, in animal experiments, gastric bleeding caused by aspirin.

Professor Maret Traber, Oregon State University, is considered one of the world’s leading vitamin E researchers. She recommends vitamin E for a number of chronic health problems, including heart disease. Louis Ignarro, who received the Nobel Prize in 1998 for his research on blood vessels, unequivocally recommends vitamin E and C for the prevention of atherosclerosis. It works, he says.

Of course, what even such big celebrities think is no argument in itself. It is the substance that counts. Yet. If you are free to choose your advisers, you are likely to prefer the most knowledgeable – and the most reliable.

By: Niels Hertz  MD

References:
1. A. Astrup. Du bliver syg af kosttilskud. Sund og Slank. Ekstra Bladet. 26.11.05.
2. The HOPE and HOPE-TOO Trial Investigators. Effects of long-term vitamin E supplementation on cardiovascular events and cancer. JAMA 2005;293:1338-47.
3. Bonaa KH. NORVIT: Randomized trial of homocysteine-lowering with B-vitamins for secondary prevention of cardiovascular disease after acute myocardial infarction. Program and Abstracts from the European Society of Cardiology Congress 2005; September 3-7, 2005; Stockholm, Sweden. Hot Line II. Iflg. Linda Brooks. NORVIT: The norwegian vitamin trial. Medscape Sept. 2005. (Not published in printed media.)

Selenium May Prevent Degenerative Joint Disease

November 24, 2005

For the first time ever, researchers have studied the correlation between selenium deficiency and osteoarthritis, which correlation is surprisingly strong and indicates that selenium supplementation may prevent the Western World’s most common cause of mobility-impairment.

There is a general agreement that selenium is a mineral which western Europeans get less and less of through their diets. Modern agricultural methods and the acidification of the soil has have caused a lowered amount of this vital antioxidant I crops, and thereby a lowered amount of selenium in our bodies. The deficiency is severe enough that, as early as the 1980’s, it widespread problems in Danish pigs so severe that, after some political tug-of-war, supplements were added to their feed. But does this deficiency mean anything for people?

So far the only answer is “probably.” Large population studies in Finland etc. have shown that members of the group which gets the least selenium via diet have the greatest risk of getting cancer.

Just as importantly, in an American randomised study with 1,300 participants undertake nine years ago, it was found that supplements of selenium halved the frequency of new cancer cases. The less selenium presents in the blood beforehand, the greater the positive effect with the supplement. The result was so certain that the study was stopped early for ethical reasons and is being repeated on a larger scale. If selenium prevents cancer so effectively, we should be absolutely certain of its effects.

Meanwhile, researchers from North Carolina’s university in cooperation with the American Center for Disease Control (CDC) discovered another relationship: Selenium deficiency causes an increased risk of arthritis of the knees. The risk of arthritis of the knees increases by 15-20% every time that the body’s selenium content is reduced by 10 micrograms (per kilo body weight). For comparison, the blood of the average Dane contains about 80 microgram/litre while the blood of the average American contains 110.

Among the nearly 900 people who were followed for 15 years, the risk was 40% lower in the third who received the most selenium. If they developed arthritis anyway, there was a tendency that it was to a lesser degree.

This is just a statistical relationship. It has not yet been published in the press, but has been presented in a congress (15.11.05) in San Diego for American arthritis doctors and can be read in an official press release from North Carolina’s university.

Nevertheless, the study’s leader, professor Joanne Jordan, has declared that the group is very excited about their findings. It could indicate that there is a possibility of preventing arthritis in the knee and possibly in other joints. In other words, it might be possible to prevent the most common reason for activity reduction in the western world. In China it is known that extreme selenium deficiency can cause severe cartilage injury in joints as early as during childhood. Does this point in the same direction?

Maybe, but it is not known for certain. According to Joanne Jordan, the next step in to study selenium’s effect on cartilage in the laboratory. The obvious hypothesis is that this effect is due to selenium’s function as an antioxidant. Clinical studies, in other words randomised studies, should be undertaken to find out whether selenium supplements effect pain and the level of function in people with arthritis.

The new finds are not final, but it is the first time that anyone has studied the correlation between arthritis and selenium. It is very surprising that the relationship is so apparent.

By: Vitality Council

References:
1. Rayman M. The importance of selenium to human health. The Lancet 2000:;356:233-41.
2. News Release. Study links low selenium levels with higher risk of osteoarthritis. The University of North Carolina at Chapel Hill: http://www.unc.edu/news/archives/nov05/jordan111005.htm
3. Clark LC. et al. Effect of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. JAMA 1996;276:1957-63.

www.thelancet.com
www.unc.edu/news/archives/nov05/jordan111005.htm
jama.ama-assn.org
www.iom.dk