Again, uneasiness regarding the pill

July 31, 2006

The pill (contraception in pill form) drains the body of the antioxidants, vitamin E and Q10. This could mean that a supplement would make it much safer to take the pill.

More than 100 million women worldwide use the pill as contraception. The pill is believed to be remarkably safe, and it is easy to forget that it can have serious side effects. According to a Dutch report from 2003, users of the pill have a 3-6 times higher risk of developing blood clots in the veins, which is a dangerous condition. In addition, they have a 2-5 times higher risk of developing blood clots in the heart or of suffering from stroke. These numbers are the same for the modern forms of the pill, which have few other few side effects.

If the risk of disease is low, (because of being young and otherwise healthy) than a low percentage increased in risk does not so important. But why is there any increase at all? Light has been thrown on this question by researchers of the Albert Einstein College of Medicine in New York. They have proven that users of the pill have lower vitamin E and Q10 levels in their blood than women who do not take the pill. Vitamin E and Q10 are well known antioxidants.

This is nothing new. Already 15 years ago, researchers believed that vitamin E could reduce the risks associated with the pill. It was also known that the pill drains the body of antioxidants, which can be directly linked to an increased risk of blood clot formation. When one lacks vitamin E, the fats in the blood become oxidized, thereby stimulating the platelets to stick together causing the formation of blood clots. Logically, it was suggested that vitamin E should be combined with use of the pill.

The pill uses up the body’s vitamin E and Q10 reserves. This has been proven again, this time in a study where 15 users of the pill in their forties were compared with women in the same age group who did not take the pill. The differences found were statistically valid, and although this was a small study there were no doubts regarding the results. These results were known before the study was completed; the problem was that nobody had been paying any attention to them.

Unsolved problems
Why does the pill strain the bloods vitamin E and Q10 contents? The pill raises the body’s oestrogen levels. This is why the ovaries go into hibernation so that ovulation is inhibited. The body registers a hormone level high enough that the ovaries can take a break. Even normal (physiologic) levels of oestrogen stimulate the formation of free radicals and therefore cause an increased use of antioxidants. This has been shown in an American study of the cells which compose the inner walls of the blood vessels (endothelium cells). They also showed that free radicals resulting from the presence of oestrogen caused the cells to grow, causing the blood vessels to thicken. It is believed that this increases the risk of blood clots. It also indicates that antioxidants could prevent such side effects.

For practical purposes, women with an increased risk for side effects are advised not to take the pill. This includes women over the age of 35, women with high blood pressure, and so on. All women with an increased risk of blood clots should refrain from using the pill. This causes some amount of contemplation. Who knows if they are in the high risk group? Is their risk so low that a five fold increase in risk is acceptable?

Aside from these problems it is important to know that if you use the pill, your defence against the formation of free radicals is weakened. Even though this is well known, no one has, until recently, thought to reduce this risk with the use of antioxidants.

An important question follows: What is the long term prognosis for women who took the pill for many years when they were young? During the many years they took the pill, they had reduced levels of vitamin E and Q10 in their blood. In the short term, this increased the oxidation of the blood’s fats which increased the risk of blood clots. But does it cause problems in the long term like smoking and high blood pressure? As yet, we can only guess.

By: Vitality Council

References:
1. Palan PR Magneson AT, Castillo M, Dunne J, Mikhail MS. Effects of menstrual cycle and oral contraceptive use on serum levels of lipid soluble antioxidants. Am J Obstet Gynecol. 2006 May;194(5):e35-8. Epub 2006 Apr 21
2. Felty Q. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling. BMC Cardiovasc Disord 2006 Apr 11;6:16
3. Ciavatti M, Renaud S. Oxidative status and oral contraceptive. Its relevance to platelet abnormalities and cardiovascular risk. Free Radic Biol Med. 1991;10(5):325-38
4. Saha A, Roy K, De K, Sengupta C. Effects of oral contraceptive norethindron on blood lipid and lipid peroxidation parameters. Acta Pol Pharm. 2000 Nov-Dec;57(6):441-7.
5. Tanis BC, Rosendaal FR. Venous and arterial thrombosis during oral contraceptive use: Risks and risk factors. Semin Vasc Med. 2003 Feb;3(1):69-84
6. Crook D, Godsland I. Safety evaluation of modern oral contraceptives. Effect on lipoprotein and carbohydrate metabolism. Contraception. 1998 Mar;57(3):189-201

An end to the old weakling

July 14, 2006

The deficiency of an important antioxidant enzyme seems to be the most important reason that the elderly develop weak muscles. This paves the way for interesting perspectives.

The most striking sign of aging is that muscle strength is reduced and movement becomes slower. Even the most persistent exerciser cannot avoid it. The weakening of the muscles is the most important reason that old people become frail.

Why does this happen? We know that with age more and more signs of oxidation by free radicals can be found in muscles and other tissue. But is this why the muscles weaken?

A group of 12 researchers from both Texas and Stanford University in U.S.A. have undertaken an unusual and very detailed study which indicates that this is precisely the reason. According to them, the age related muscle weakness is due to strain from free oxygen radicals. This can shine light on possible ways to slow this process and maintain mobility longer.

Aging mice are a reliable model for age related muscle weakness in humans. But the American study was just possible because they had a special genetically manipulated mouse which lacked the ability to produce SOD (superoxide dismutase), a very important anti-oxidative enzyme.

In order to understand this it is necessary to know that free radicals are broken down in a chain reaction. SOD is necessary in the first step. In this step “active oxygen” (superoxide anions) is converted to less dangerous hydrogen peroxide. Without SOD this occurs very slowly, but with SOD this occurs at breakneck speed. In the next step hydrogen peroxide, which is also dangerous, is converted to harmless water. This occurs with the help of a selenium rich enzyme. This is one of the best known reasons that selenium, which we get too little of, is necessary for life.

Vital SOD
Back to SOD. It is also necessary to know that there are many forms of SOD. One of them is found in the mitochondria, which are the small power plants of the cells where cell metabolism occurs. If a mouse lacks SOD here, it dies after no more than three weeks. The power plants are destroyed by the free radicals which they produce. Another form of SOD is found outside the mitochondria, but still inside the cells. If the mice lack this type they can survive, but their lifespan is shortened by about 30%.

The researchers worked with mice which lacked the latter SOD form. They saw that the mice already started to develop weakened muscles while young. When the mice were 29 months old, they lacked half of their muscle mass in their hindquarters, whereas normal mice of the same age retain all of their youthful muscle. The so called fast type II muscle fibres were the most affected. The mice were left with slower type I fibres. Heart muscle remained undamaged.

The strength and speed of the muscles were not the only things affected. The mice also became less curious and less willing to engage in exhausting exercises like running in a mouse wheel. When they become old, they shook slightly in their weakened muscles.

It is hard to contest that this damage was caused by oxygen radicals. SOD has no other function other than being an antioxidant. As always it can be added that more research is necessary. This was only a study on mice. But if the results can be transferred to humans it can be argued that it is beneficial to increase the body’s production of SOD. SOD production is decreased with age.

Because SOD is an enzyme, which is to say a protein, it cannot be eaten without being destroyed in the stomach unless given as a special preparation. In combination with other antioxidants and possibly vitamin D (but that’s another story) the effect is supposedly more pronounced. This is not certain, but it is interesting.

By: Vitality Council

References:
1. Muller, Florian L et al. Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy. Free Radical Biology & Medicine 2006;40:1993-2004
2. Jackson Malcolm J. Lack of CuZnSOD activity: A pointer to the mechanisms underlying age-related loss of muscle function, a commentary on “Absence of CuZn superoxide dismutase leads to elevated oxidative stress and acceleration of age-dependent skeletal muscle atrophy”. Free Radical Biology & Medicine 2006;40:1900-01

Vitamin D Can Be Used As Heart Medicine

May 23, 2006

The warnings against direct sunlight in the summer should be taken with a grain of salt. The vitamin D synthesized in the skin in the wonderful sunshine, prevents, amongst other things, weakening of the heart, if we look at the latest research.

Sooner or later in the course of the summer a dermatologist will appear on television to warn against direct exposure to the sun. It may lead to skin cancer and also threatening is the feared, deadly birthmark cancer, the incidence of which has risen dramatically in step with more and more people desiring a tan. This is partly true.

On the other hand it is prudent to be skeptical when someone advices us to act against what is natural. Can it really be true that the sun is so dangerous when people in our part of the world have been far more exposed to the sun through thousands of years?

Vitamin D is made in the skin when it is in the sunlight, but not from September till May, when the sun is too low on the horizon to be used for this in our part of the world. Since our diet only contains minimal amounts of this vitamin, in the wintertime we use the vitamin which has been built up in the skin in the course of the summer. During the winter approximately 85 % of the daily D-vitamin usage is taken from reserves, even in cases where the diet is rich in D-vitamin. All in all, approximately 100 mcg. is used in a day.

But what happens if the reserves are too small?

In the past half-year a number of studies have shed light over the mysteries of vitamin D. According to one study, the vitamin can help against tuberculosis, which we know was a widespread disease in the 19th and beginning of the 20th century, when many people lived under dire conditions in the cities.

Another study of over 14,000 Americans showed that the people with the largest D-vitamin reserves generally had far better lung function than those with the smallest stores. The difference is as big as the difference between ex-smokers and people who have never smoked before. A possible explanation is that the D-vitamin secures the necessary repairs of worn-out cells.

At about the same time, one of the veterans of vitamin-D research, the American Cedric Garland, concluded that now the proof that vitamin D protects against cancer (especially breast cancer, cancer of the colon and prostate cancer) was very strong. Strong enough to make him regard the connection as definite. He has reviewed all relevant research done since 1966.

Weak Heart and Arthritis
His claims can be compared to the fact that David Feldman of Stanford University now wants to conduct an experiment with calcitriol (the active form of vitamin D, which is made in body from vitamin D in the skin or the food) and ordinary arthritis medication against prostate cancer. In laboratory studies he has found that calcitriol slows the growth of prostate cancer by 25 %, while the combination with arthritis medication slows it by 70 %. A true break-through if it is true.

Everyone knows that vitamin D is necessary for the bones, but it is also necessary for the muscles. A deficiency leads to both muscle pain, weak muscles and for example, a tendency to fall in the elderly. But what about the heart? The heart is also a muscle, and weakening of the heart (cardiac insufficiency) because of atherosclerosis or increased blood pressure occurs in as many as 50,000 Danes. It is a dangerous condition with a high mortality rate.

A German study of 123 patients with a weak heart showed that on average they had quite small amounts of vitamin D in their blood stream, close to a deficiency in the traditional sense. Half of them were given supplements of 50 mcg. D3-vitamin each day for nine months. This is five times as much as the elderly are traditionally recommended given, and is also the upper limit, of what is not dangerous to ingest.
The study was too small to show a difference in mortality, but it did show something interesting. It concerns the protein TNF-alpha, which is produced by the white blood cells in connection with inflammation. TNF-alpha is meant to be a major cause of weakening of the heart. In the patients left untreated, the blood’s content of this protein increased by 5 %. In those treated, there was no worsening. This indicates a stabilizing effect on the inflammation.

This is especially interesting for another reason. TNF-alpha is an important cause of pain and swelling in arthritis. So important that new types of arthritis medication, which blocks TNF-alpha, fittingly, are considered wonder-drugs. If vitamin D decreases the effect of TNF-alpha on the weakened heart, maybe the same happens in arthritic joints. This would also confirm the old assumption that vitamin D protects against arthritis.

When in the sun, one should be sensible and avoid sunburns. Stay in the shadow if the sun is very strong and do not lie about for hours in the sun all covered up in greasy sun lotion.

Also important to know is that it is a risk rather than a virtue to stay out of the sun in the summer.

By: Vitality Council

References
1. Schleithof S S et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: A double blind randomized placebo-controlled trial. Am J Clin Nutr 2006;83:754-9
2. Heaney R et al. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr 2003;77:304-10.
3. Moreno J, Krishnan AV, Feldman D. Molecular mechanisms mediating the anti-proliferative effects of Vitamin D in prostate cancer. J Steroid Biochem Mol Biol. 2004 Nov;92(4):317-25

www.ajcn.org
www.elsevier.com/wps/find/journaldescription.cws_home/333/description

Alzheimer’s disease: The third diabetes

May 4, 2006

According to a revolutionary theory, Alzheimer’s is caused by diabetes in the brain. The theory throws light on the need for antioxidants.

It has been one hundred years since the discovery of Alzheimer’s disease. Alzheimer’s is the most severe disease of dementia, and many of us will suffer from it if we become old enough. Those who get Alzheimer’s suffer from an unavoidable dementia which worsens until they loose contact with reality entirely. The brain shrinks and the spaces between the brain cells become filled with a peculiar substance called amyloid. A network of fibres is produced within the cells, decreasing the strength of the chemical signals that the cells use to communicate.

The medical treatment for Alzheimer’s is currently nothing to get exited about. Its function is to strengthen the chemical signals between the cells, but its effects are few. Now, one hundred years after the disease’s discovery, a surprising new theory has paved the way for new possibilities in the treatment of Alzheimer’s. According to the theory, Alzheimer’s is nothing more than a type of diabetes! The theory has such strong foundations that some already call Alzheimer’s “type 3 diabetes.”

Diabetics should not be alarmed by this find. Type 3 diabetes is in no way connected with either insulin requiring type 1 diabetes or the so called old age diabetes, type 2 diabetes. Type 3 diabetes only shows itself in the brain. How does it get there?

The explanation is simple when one knows a few facts about diabetes and insulin: With classic diabetes one lacks insulin, which is normally produced in the pancreas. This is unfortunate because insulin is necessary for the sugar I the blood to enter the cells, where it can be used for energy. The brain is especially dependent on insulin, because it can only metabolise blood sugar (fructose and glucose), not fat as in other tissues.

Therefore the brain needs insulin. But where does it get it? The new theory is based on new knowledge. The brain makes its own insulin! This occurs in the temporal lobes and in deep lying areas of the brain, namely the hippocampus and the hypothalamus. Insulin produced in the brain only affects blood sugar locally as it cannot leave the brain. Likewise, insulin produced by the pancreas cannot enter the brain. One can thus have diabetes in the brain without having it in the rest of the body and the reverse.

Q10 protects the brain
Multitudes of data have shown that there are signs of defect in the brain’s sugar metabolism already in the early stages of Alzheimer’s. Is this due to type 3 diabetes, seen as a lack of insulin and therefore sugar within the cells? A solid argument for this new theory is based on a recent animal study where the effect of insulin in the brains of the animals was blocked chemically by an injection of a special insulin toxin (streptozotocin). The animals not only became demented due to the resulting brain diabetes, but also produced fewer neurotransmitters, produced deposits of amyloid, and produced fibres within the nerve cells; just like one finds in Alzheimer’s.

Alzheimer’s could thus be the result of the brain lacking the energy it needs to perform its functions. According to a very prominent researcher in this field, Suzanne de la Monte from Brown University, lack of insulin in the brain causes the production of free radicals (causing oxidative stress) because the weakened cells cannot neutralize them because, for example, they cannot produce the necessary enzymes. The amassed free radicals cause the amyloid deposits, and fibre formation, and so on. They also kill the brain cells.

But if the free radicals are the central reason for the nervous damage, antioxidants should help. Is this the case? Yes; in another recent animal study utilizing the same insulin poison, the animals (rats) were given large doses of Q10 for three weeks following the injection of the poison. The treated animals were much better off in all of the subsequent tests. Their brain cells produced more energy, they were better able to find their way in a labyrinth, and they produced more signalling chemicals in their brains.

It is not unreasonable to mention here that there have been many studies which have shown that long time users of vitamins C and E have a considerably reduced risk of getting Alzheimer’s; or that there is a statistical link between low blood levels of selenium and the quick development of dementia. Vitamins E and C, as well as selenium and Q10, are antioxidants.

Is this comparison valid? This can be considered; studies using human subjects will take shape in the coming years.

By: Vitality Council

References:
1. Ishrat T et al. Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav. Brain Res. 2006; Apr 16;(Epub ahead of print)
2. Lester-Coll N et al. Intracerebral streptozotocin model of type 3 diabetes: Relevance to sporadic Alzheimer disease. J Alzheimers Dis. 2006;9:13-33.

Vitamin D Could Prevent Every Third Cancer-related Death

April 21, 2006

Several of the World’s leading vitamin researchers advocate a much higher vitamin D-intake. They believe that up to every third death from cancer may be prevented.

“I challenge anyone to find a field or a nutritional substance or any other factor with as effective cancer-fighting properties as vitamin D.”

So said Edward Giovanucci, professor at Harvard University, last year in a speech to the American Society for Cancer Research.

More and more agree with Giovanucci, amongst them, several professors from well-renowned universities. A few months ago Cedric Garland, an absolute pioneer in the field, stated that it has been proved that the risk of cancer can be lowered dramatically with vitamin D. These are big words. Garland is a professor at the University of California in San Diego.

Giovanucci has together with six others, of these, no less than three are professors from Harvard, confirmed the claim further. In a quite laborious study they have confirmed the close connection between a vitamin D deficiency and cancer.

Since World War II it has been known that especially cancer in the alimentary canal is seen relatively seldom in southern countries. Since sunlight is the most important source of vitamin D, it has earlier been guessed that it was vitamin D and not the sun, which offers protection. In numerous studies the incidence of cancer has been found to be highest where sunlight is weakest, and where the content of vitamin D in the blood is lowest. We are children of the sun. At the same time laboratory research in recent years has shown that this vitamin inhibits the growth of abnormal cells, counteracts the spread of cancer and prevents the formation of blood vessels in tumorous masses.

Giovanucci now finds further proof of the connection. Earlier in humans there has only been found an indirect connection between vitamin D and cancer. There has been a lack of data from whole groups of the population, that have had their blood content of vitamin D measured, and have then been followed for a number of years. But Giovanucci has found something to substitute this data.

Mega doses of Vitamin D
They took 1095 men from the big population study “Health Professionals Follow-Up Study”. These 1095 men had had their vitamin D-status measured (this means the content of vitamin D in the blood). In addition, a lot of things were known about their personal habits etc. Would it be possible to go backwards and calculate their vitamin D-status from their personal habits? Yes! An estimation of the approximate vitamin D blood content could be made, when the individual’s skin colour (eg. race), body mass, height, place of residence (southern/northern in the USA), the amount of physical activity, time of year and the content of vitamin D in the test subject’s diet and possibly supplements was known.

In this manner the group worked out a point-system for the direct calculation of vitamin D status. What especially contributed to a low status was a northern place of residence, dark skin colour, overweight and lack of exercise. The calculations proved correct for the 1095 test subjects. But would they be correct for other people? They were checked for another group of men with known vitamin D status. They were consistent!

Every single subject, of the 47,800 men in Health Professionals Follow-Up Study now had their vitamin D status calculated. In the course of approximately four years, about one in ten got cancer. About half that died from it.

To find the significance of vitamin D, they chose to compare dead men whose plasma values for vitamin D (25(OH)D3) deviated by 25 nmol/L (nanomol/liter). It was found that the risk of dying from cancer was no less than 29 percent lower in men with a high vitamin D status. Concerning cancer of the alimentary canal – it was 45 percent lower for men, who were otherwise identical with regards to age, weight and level of physical activity.

If these results are correct, every third death from cancer may be prevented in the course of a few years. Also in the UK. This is nothing but a sensation. But if one wishes to increase the plasma level of vitamin D by 25 nmol/L, one must receive a supplement of no less than 1,500 units of vitamin D during the winter. This is achieved if a supplement of four vitamin D tablets of 10 mcg (micrograms) is taken daily from August until April.

1,500 units will probably shock many. Is it not toxic? No, it is quite certain that there is no risk, even with a permanent supplement of 2,000 units daily. For comparison, the skin produces 20,000 units during half an hour in the sun in the summer.

Garland, who was mentioned above, recommends 1,000 units (25 micrograms) a day. Others say 2,000. Giovanucci and his colleagues from Harvard strongly recommend 1,500.

Under any circumstances: If you want the full advantage of vitamin D, it seems that the need is far greater than what we have gotten used to believe. Maybe it is close to what stone-age people received naturally from their diet.

By: Vitality Council

References
1. Giovanucci E et al. Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst 2006;98:451-9
2. Garland CF et al. The Role of Vitamin D in Cancer Prevention. Am J Public Health. 2006;96(2):9-18. 2005 Dec 27; [Epub ahead of print]

jncicancerspectrum.oxfordjournals.org
www.ajph.org
www.iom.dk

Fish Oil – Still Indispensible!

April 7, 2006

A British study claims that fishoil does not protect the heart. Formally, it is founded on the sum of all earlier studies. In reality it relies on only one, where the participants of the study probably cheated.

As time goes by, studies of all sorts of things pile up. At some point no one can keep track of them. Even people with a good memory remember only the studies they like. This calls for a meta-analysis – a calculation of a sort of average of what all reliable studies have shown.

This has now happened in a British study of fish oil. Does fish oil protect the heart? Does it prolong life? Yes, we know that it does!

At least, so we think. According to the new meta-analysis fish oil has “no clear effect on mortality, risk of heart attack or the incidence of cancer” – rest assured, you do not need to eat fish!

As far as cancer goes, one is hardly surprised, but what about the heart? Ever since the two Danish doctors’, Bang and Dyerberg’s, studies on Greenland 35 years ago, everyone has known that fish oil protects the heart. This is confirmed by numerous studies. How can all these studies amount to a big fat zero when summarized?

Of course they cannot. A meta-analysis can be just as subjective as everything else. This means that others, with the same starting point can arrive at the opposite result. This is the case in a new, far more comprehensive, American report. There is no doubt that fish oil is beneficial for the heart. In fact, it is stated in this report that everyone should be tested to see if they get enough of it. The two important fatty acids in fish oil, DHA and EPA, have “clear beneficial effects”. Everyone should ingest at least 1.5 grams of fish oil every day, in case of heart disease, double that. This will lessen the risk of dying from heart disease by 25 %.

That was the Americans. They thoroughly reviewed the extensive biochemical knowledge and conclusions from animal and human studies. From this they made a general conclusion. What did the British do?

The Test Subjects Cheated
They completely ignored all basic knowledge and concentrated on the incidence of heart disease and mortality in humans. But were they neutral?

They reviewed a total of 48 randomized studies. But they did something strange: Only fifteen of the studies were included in the mortality calculations. Why the remaining 33 studies were not included is not known. Maybe some were excluded because of suspicion of being biased. But, in nine of the fifteen studies included, there was “medium or high” risk of bias. For example because the test subjects knew whether they were given fish oil, or, because of the draw, were given something ineffective.

On top of this, an unknown number of the 48 studies were not even with fish oil but with alpha-linoic acid – which is found in flaxseed oil and in rape oil. These oils can be converted to “fish oil” in the human body.

Besides, the most famous study of linoleic acid is missing – the so-called Lyon experiment where rape oil (and a Mediterranean diet with olive oil) lowered the mortality in patients who had had a coronary thrombosis by 73 %.

When everything is boiled down, twelve randomized studies with fish oil remain. But of these, nine are very small and without relevance. This leaves three. The biggest of these three studies, (GISSI) show a massive reduction in mortality in twenty percent of persons who had had a coronary thrombosis. In the table it only says fourteen percent, apparently because of a misunderstanding.

Only one of the larger studies (Burr et al 2003) came out with a negative result. Here the mortality increased by fifteen percent in men with sclerotic coronary arteries, when they were given fish oil.

However, this study is at the least controversial, partly because the participants knew if they were given fish oil or not. Since they had a dangerous heart disease, many of them would have been tempted to take supplements on their own. This could have been checked through blood tests, but only a spot test was taken after six months. After this the study continued for three to nine years. The spot test showed that the difference between the two groups was remarkably small. Moreover, the participants explained that even if they were not in the group given fish oil, they ate so much fat fish (14 grams a day) that this alone would have provided them with the amount recommended in the American report. So, in fact, both groups received “enough”, and the value of this study must be questioned.

Still, it was printed in the news paper. However, you should believe the American report.

Fish is good – of course!

By: Vitality Council

References:
1. Hooper et al. Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: Systematic review. BMJ online 24.3.06: BMJ, doi:10.1136/bmj.38755.366331.2F
2. Wang C et al. Agency for Health Care Research and Quality. US Department of Health Care Rsearch and Human Services. www.abrq.gov . Evidence report/technology assessment Number 94. Effects of omega -3 fatty acids on cardiovascular disease. March 2004.
3. Burr ML, Ashfield-Watt PA, Dustan FD, . , et al.: Lack of benefit of dietary advice to men with angina: results of a controlled trial. Eur J Clin Nutr 2003, 57: 193-200.

bmj.bmjjournals.com
www.ahrq.gov
www.nature.com/ejcn/index.html

Smokers should get more vitamin C and E

April 1, 2006

Far too many people get too little vitamin E. The problem is especially large in smokers and can partially be solved by a supplement of vitamin C.

What do you do if you get too little vitamin E? Here is a suggestion: take more vitamin C.

Smokers have this problem more than any other group. They use vitamin E much faster than non-smokers. This is because tobacco smoke oxidizes and destroys the vitamin, which causes it to fail in the fight to protect the unsaturated fats of the body’s cells. Smokers therefore have a greater need for vitamin E than non-smokers. Because they have a greater need, it is easier for them to receive too little.

This is where vitamin C comes in. Vitamin C is easier to get a hold of than vitamin E. Because vitamin C is an antioxidant it can protect the vitamin E from oxidization by the free radicals of the tobacco smoke. This has long been believed, but, until recently, remained unproven in people. There has lately been a small scientific breakthrough in this field.

The study was done as a cooperative effort between a number of American universities and one Canadian university. 11 smokers and 13 non-smokers were given supplements of 50 mg vitamin E containing deuterium. By measuring the amount of deuterium in the blood the researchers were able to determine how fast the vitamin E disappeared from the smoker’s blood (plasma) and compare that to the changes in vitamin E levels in the non-smokers.

It disappeared, as expected, fastest in the smokers. In the course of 25 hours half of the marked vitamin E had disappeared. In the non-smokers this took 42 hours. But, when the smokers were given 500 mg vitamin C morning and evening, it took 34 hours for half of the marked vitamin E to disappear. The vitamin C protected the vitamin E reserves in the smokers, but did not bring them to the level of those in the non-smokers.

Far too few get enough
One can therefore see a normalising of vitamin E in smokers with the help of vitamin C. This is of course only true if the smokers receive enough vitamin E in the first place, which can be said of far too few.

To conclude the summary of this research is should be mentioned that only 8% of men and 2.4% of women receive the recommended 12 mg vitamin E (alpha-tocopherol) per day. This is highly likely no better in the U.K. The first and most important recommendation made is that smokers received the recommended amounts (for smokers) of both vitamins C and E (125 mg vit. C and 15 mg vit. E). The second recommendation is that more research be undertaken regarding whether other antioxidants can protect against the degradation of vitamin E. This is important.

But is it true that one needs 12 mg vitamin E per day? Yes it is! An earlier study has shown that the bodily tissue of healthy, young people uses about 5 mg vitamin E (alpha-tocopherol) per day.

Because one on average only absorbs about one third of ones food intake in the intestine, should one take a little bit more than the aforementioned 12 mg. But if one eats an especially light diet more should be taken. If breakfast is only cornflakes and low fat milk, taking a vitamin E supplement won’t do much good. Only a tenth of it will be absorbed.

Even young, healthy smokers should receive more vitamin E than others. Older people have an even greater need and it is apparent that most people don’t get enough.

By: Vitality Council

References
1. Bruno R S et al. Human vitamin E requirements assessed with the use of apples fortified with deuterium-labeled α-tocopheryl acetate. Am J Clin Nutr 2006;83:299-304
2. Bruno R S et al. α-Tocopherol acetate disappearance is faster i9n cigarette smokers and is inversely related to their ascorbic acid status- Am J Clin Nutr 2005;81:95.103.
3. Bruno R S et al. Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radical Biology & Medicine 2006;40:689-97

Vitamin C against atherosclerosis (hardened arteries)

March 23, 2006

So far a British research study is showing that C vitamin fights inflammation. Therefore it is very possible that it also fights hardened arteries and blodclots.

If one compares peoples’ eating habits with their risk of blood clots in the heart, one gets the impression that vitamin C prevents blood clots. So far it has been hard to prove through randomised trails that vitamin C supplements protect high risk patients from blood clots. This is how it has been up to now, even though one can claim that many of the studies have been lacking.

Whatever the objections, it is widely believed that the debate over.

It is currently said that vitamin C does not protect against atherosclerosis, but is it true? A recent summary could indicate that the debate is long from over. It shows that vitamin C counteracts inflammation, which is to say infection-like reactions. There is also widespread agreement that atherosclerosis is due to inflammation. Does vitamin C therefore protect against atherosclerosis?

In order to understand the problem it is necessary to take a little detour in this discussion:
Until 20-30 years ago, atherosclerosis was believed to be a process which was roughly due to the depositing of cholesterol in the walls of the blood vessels followed by the build up of calcium. Today it is understood the vessel walls are composed of living cells, and that both the build up of cholesterol and the thickening of the vessel walls are related to inflammation. The same is true for the bursting of the surface against the blood stream, with the emptying of cholesterol and cell products, which causes the platelets (etc.) to clump together, causing a blood clot.

Inflammation appears, curiously enough, to be a part of the sales success of the cholesterol lowering medications, the so called statins. It cannot be denied that they save lives, but is it because they lower the blood’s cholesterol level?

Vitamin C lowers CRP
Here there is doubt. Statins do not only lower cholesterol, but also reduce inflammation. This can be directly measured by a simple blood test (CRP) which hundreds of thousands of Danes get taken when their doctors what to know if they have infection in their bodies. The two effects of statins, the lowering of CRP and the reduction of cholesterol, are not necessarily related, but the risk of blood clots in the heart is more related to CRP than to cholesterol levels. In a study where statins were shown to reduce the risk of heart disease by ca. 30%, their favourable effect was statistically shown to be related to CRP levels, regardless of the cholesterol level! It looks like CRP is more important than cholesterol!

With this we can return to vitamin C. Does vitamin C reduce CRP, just like statins?

In a couple of small randomised studies it was examined whether or not this is the case. In both studies the daily dose of vitamin C was about 500 mg. In the first (with smokers as the participants) CRP was markedly reduced, in the second nothing happened. The contradictory results have now been explained by a study with 3258 reasonably cardio-vascular healthy men between the ages of 60-79.

The primary result was that the more vitamin C that the men had in their blood (serum), the lower their CRP. The quarter of the participants who had the highest level of vitamin C in their blood (with or without consideration of supplements), had the lowest CRP values. The difference was overwhelmingly statistically certain. Concurrently, other measurements indicated that the likelihood for “irritability” of the vessel walls (endothelial dysfunction) was also the lowest in the highest vitamin C group. There is common agreement that this “irritability” mirrors a tendency for atherosclerosis.

Vitamin C is therefore believed to lower CRP, which is an important indicator for inflammation, and therefore the risk of dying of a blood clot. The debate rages on!

By: Vitality Council

References:
1. Ridker et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005;352:20-8
2. Ridker PM, C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005 Jan 6;352(1):20-8
3. Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr 2006;83(Suppl):456S-60S
4. Goya S et al. Associations of vitamin C status, fruit and vegetable intakes, and markers of inflammation and hemostasis. Am J Clin Nutr 2006;83:567-74
5. Ishwarlal J et al. Is vitamin C an anti-inflammatory agent? Am J Clin Nutr 2006;83:525-6
6. Mora S Justification for the Use of Statins in Primary Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER)–can C-reactive protein be used to target statin therapy in primary prevention?Am J Cardiol. 2006 Jan 16;97(2A):33A-41A. Epub 2005 Dec 1.
7. Bruunsgaard H, Long-term combined supplementations with alpha-tocopherol and vitamin C have no detectable anti-inflammatory effects in healthy men. J Nutr. 2003 Apr;133(4):1170-3.
8. Block G Plasma C-reactive protein concentrations in active and passive smokers: influence of antioxidant supplementation. J Am Coll Nutr. 2004 Apr;23(2):141-7.

content.nejm.org
www.ajcn.org
www.nutrition.org

Children with ADHD lack magneisum

March 17, 2006

A majority of restless ADHD children were lacking in magnesium. All children improved when given magnesium and B6-vitamin supplements.

In almost all kindergarten classes there are one or two so-called ADHD-children giving the teacher a hard time with their continuous restlessness, running about, violent behaviour and inattentiveness. (ADHD stands for Attention Deficit, Hyperactivity Disorder).

Two studies – the only ones conducted – have now shown that a combination of magnesium and vitamin B6 helps.

Why should magnesium help? In a French study 52 children, all diagnosed with ADHD, were examined. The children were typically six years old. If the serum level of magnesium was measured in a normal blood test, normal values were seen. But since almost all magnesium in the body is found inside the cells, this says nothing. It is inside the cells that we must look.

On average, the children only had 4/5 of the amount of magnesium in the cells (in this case, the red blood cells) present in normal adults. They were deficient in magnesium!

Therefore they were given a daily supplement of 6 mg. of magnesium and 0.8 mg. Vitamin B6 per kilo body mass for one to six months. After this, no less than all the children got better. For example, at the beginning of the experiment 26 of the children were deemed physically aggressive. After four months, only six. At the same time their ability to concentrate and their attention span improved (evaluated in an approved manner). Statistically, these results were quite credible.

A weakness in the French study was that it was a so-called open study. There was no untreated control group and the treatment was not blind. This leaves room for coincidence and over-interpretation. On the other hand, the study showed exactly the same as a similar study from 1997. Also, the improvements occurred at the same time as the measurable magnesium deficiency disappeared. When this had happened, treatment was stopped.

Magnesium in the Diet
If it works, it may not be that surprising. The same course of treatment seems to have helped women suffering from irritability and imbalance due to PMS (PreMenstrual Syndrome) in several studies. On top of this comes the generally sedative effect on nerves (magnesium can be used as a local anaesthetic). Magnesium has a relaxing effect on muscles. Does magnesium also have a calming effect on the central nervous system?

Another question is why ADHD-children apparently are deficient in magnesium. The French suggest that genetic factors play a role, but in a majority of the parents, it was not just one, but both of them who were deficient in the mineral. This suggests that nutrition is more important.

A British evaluation indicates that foodstuffs’ content of magnesium has decreased in the past 60 years. It is estimated that today there is 24 and 16 percent less magnesium in vegetables and fruit, respectively, than in 1940. On top of this is an increase in the consumption of sugar. Those who dauntlessly claim that 10 percent of the calories in the diet can be contributed by sugar, are also saying that you can easily omit 10 percent of the diet’s magnesium. Furthermore, less physical work means a decreased need for food generally, thereby decreasing the amount of magnesium we consume. A typical magnesium consumption rate today (3-400 mg. a day) is probably half of what it was 100 years ago.

Something else to consider also is that there is a row of more or less confirmed observations of connections between behavioural disorders in children and teenagers (and criminals) and an unhealthy diet. Is this purely coincidence?
It will take several months to rectify a magnesium deficiency, but it might be worth it to try.

By: Vitality Council

References:
1. Mousain-Bosc et al. Magnesium VitB6 intake reduces central nervous system hyperexcitability in children. J Am Coll Nutrition 2004;23:545S-548S
2. Starobrat-Hermelin et al. The effects of magnesium physiological supplementation on hyperactivity in children with attention deficit hyperactive disorder (ADHD). Magnes Res 1997;10:143-8

www.jacn.org

Greater need for vitamin B-12

February 1, 2006

Middle-aged and elderly women’s need for Vitamin B-12 is with great certainty 2,5 times higher than previously believed. A daily vitamin tablet is often not enough.

How is the need for a vitamin determined? Earlier it was determined based on how much is necessary to avoid acute deficiencies. This is sometimes still the case. For example, the current recommendations for vitamin C are still based on a World War II study on 20 English military objectors. Half of them came down with scurvy and two were close to death. But this study found that scurvy can be avoided with 12 mg vitamin C per day.

This kind of research is brutal by today’s standards. But it is also antiquated because it does not take other deficiency symptoms into account, including those which arise after longer periods and are not coupled with bruising of the skin, brittle bones, paralyses, and other acute symptoms. Today, instead of merely recording with a study participant becomes deathly ill, we follow the processes that the vitamins in question are involved in and determine whether or not they function as they should. This methodology was used by the American, Mark Levine when he proved that our need for vitamin C is closed to 200 mg per day than the normally recommended 60 mg. If one makes due with 60 mg it is believed that the vitamin C dependant reactions become slow and that there is an significantly increased risk of cardiovascular disease and cancer.

Of current interest, there is news regarding the need for vitamin B12. The current recommendation in England has been set to 1 microgram per day. A Danish study has recently shown that the need for vitamin B12 is six times as much (6 micrograms). This was determined in a study of 98 Danish women with an average age of 60. Such a large need meanwhile created a problem; the women typically only received 4.6 micrograms via their diet.

Even though they supplemented their intake with a normal vitamin pill (1 microgram B12), half of them received too little vitamin B12. Stronger pills are needed.

Increasing recommendations
For the last 50 years B12 status has been determined by measuring the blood’s B12 content. Findings in recent years have shown that a “normal” B12 value does not necessarily mean that there is enough. Even with a normal B12 value, build op of metabolism products which B12 normally removes can occur (these include homocysteine and MMA, otherwise known as methylmalonic acid). Therefore the amount of these substances present is measured when trying to determine whether or not there is a deficiency.

Recently a third indirect measure for B12 deficiency has been put into focus: holotranscobalamin, a B12 containing protein, seems to be able to replace the above-mentioned method and may even be more sensitive to B12 deficiency. It is very important to get enough of this protein. It is responsible for delivering B12 to the cells, almost like the paperboy who delivers the paper to your door. Without the paperboy, there is no paper.

The Danish study showed that the values for Holotranscobalamin, MMA, and homocysteine no longer indicated deficiency only when a B12 intake of over 6 micrograms per day was achieved. If B12 intake is less than 6 micrograms, there is sand in the B12-works.

The researchers conclude with conviction:
”…our results, together with those of others, strongly suggest that the RDA of 2.4 micrograms/day should be increased.”
This can also been said about many other vitamins. Experience from recent years indicates that the recommendations for not only vitamin B12, but also vitamins C and E and the minerals selenium, chromium, and magnesium, should also be increased, and in some cases greatly increased. Increased intake of many of the other B vitamins as well as iodine should also be considered.

This is especially true about vitamin D, on which we at the Danish Vitality Counsel have focused. The recommended daily dosage of vitamin D should be doubled for those of us who live in northern climes.

The official recommendations have as a whole not followed developments in research, even though there are strong arguments for new recommendations. According to some, there is need for more evidence. But this is contrary to the supposition that new recommendations could prevent serious chronic disease.

The dilemma is strengthened by the fact that it is difficult or impossible to get higher doses of vitamins and minerals though our modern diet. Some suggest that it might be possible with a Stone Age diet, but we surely will not have another Stone Age.

By: Vitality Council

References:
1. Mustafa Vakar Bor et al. A daily intake of approximately 6 {micro}g vitamin B-12 appears to saturate all the vitamin B-12-related variables in Danish postmenopausal women. Am J Clin Nutr. 2006 Jan;83(1):52-8.
2. Zouë Lloyd-Wright et al. Holotranscobalamin as an Indicator of Dietary Vitamin B12 Deficiency. Clinical Chemistry 49: 2076-2078, 2003;10.1373/clinchem.2003.020743.

www.ajcn.org
www.clinchem.org
www.iom.dk