Fish oil reduces age-related blindness

October 14, 2009

New U.S. study shows that intake of fish oil may reduce the incidence of age-related blindness by 30%

There seems to be no end to blessings from fish oil.

Fish oil is the end stages in the development of omega-3 fatty acids which is transformed from alpha-linolenic acid in a number of processes to E.g. eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) which then are converted to prostaglandin E 3 with a wide range of health-promoting properties.

The fish oils EPA and DHA are some of the strongest anti-inflammatory nutrients, we can consume. This is probably one of the reasons why they reduce the risk of blood clots, but they also reduces blood triglycerides, reduces inflammation in rheumatic diseases, enhances children’s learning capacity, reduces the risk of pre-eclampsia (pregnancy–induced high blood pressure) and premature birth, and gives brighter children from pregnant women who took fish oil and much more.

It is indeed difficult to see the end of the health-promoting properties, we can get from fish oil, and new scientific findings seems to emerge all the time which support its use.

Thus, even last week when researchers from the National Eye Institute in Bethesda, MD, USA, 7 October published a study in the American Journal of Clinical Nutrition.
Scientists have over 12 years studied 1,837 people with moderate to severe risk of age-related central blindness in the form of central atrophy or macular degeneration.

For both types of blindness, it appeared that the incidence was 30% lower in the group that took the most fish oil (0.11% of total caloric intake) compared with the group that took the least.

Although previous studies have been uncertain in its conclusions, the authors believe that the figures can be generalized, this is both a cheap and readily available intervention opportunity against risk families with high incidence of these diseases.

In times when the collective consensus have shouted in our ears that we should eat less fat, it is important to use common sense, read the research properly and stand firm.

Fat is healthy, and fat is vital!

One should obviously not wallow in margarine, french fries and chips, but make sure to eat well from the healthy fats as olive oil and especially fish oil.

It can be ingested as a liquid, as capsules, or as very attractive food.

Fish is not only healthy but also tastes very good indeed. Many people are nevertheless troubled by the increasing presence of heavy metals in fish, but if you avoid the large predatory fish as swordfish and tuna, there is significantly less in for example salmon and trout, especially if they are caught in clean rivers and lakes.

There are however problems with farmed fish, which often contains pretty much omega-6 fat, due to the fish feed composition. And this we should avoid. We already get far too much omega-6, especially linoleic acid, found in the cheap cooking oils with corn and sunflower oil, so as to avoid further bias, we must select the oily fish that are caught in the wild and not farmed.

We must remind you that in a previous newsletter we described two studies that showed that even eggs contain substances that prevent the age-related central blindness, so it may be, we soon will see a Danish ban against bread with eggs and herring. In Denmark food is not allowed to prevent a disease!

Enjoy your meal.

By: Claus Hancke, MD 

References:

  • Sangiovanni JP, Agron E, et al. Omega-3 Long-chain polyunsaturated fatty acid intake and 12-y incidence of neovascular age-related macular degeneration and central geographic atrophy: a prospective cohort study from the Age-Related Eye Disease Study, Am J Clin Nutr, 2009 Oct 7 (E-pub. Ahead of print)
  • Mares JA, Larowe TL, et al. Predictors of optical density of lutein and zeaxanthin in retinas of older women in the Carotenoids in Age-Related Eye Disease Study, an ancillary study of the Women’s Health Initiative. Am J Clin Nutr., 2006, 84(5): 1107-1122.
  • Wenzel AJ, Gerweck C, et al. A 12-wk egg intervention increases serum zeaxanthin and macular pigment optical density in women. J Nutr., 2006; 136(10):2568-73.

Fat is beneficial for the eyes

June 15, 2009

Two new studies suggest that the most common cause of functional blindness is preventable with healthy fatty acids.

This newsletter has previously suggested that certain vitamins and other nutrients have a preventive effect against the age-related macular degeneration (AMD), meaning a degeneration of the cones in the macula. The cells of the retina responsible for our central vision and our color vision.

Recently two new scientific studies have appeared from Australia, which very convincingly make probable that it is the healthy fatty acids that prevent this frequent visual impairment.

The first study showed that high intake of omega-3 fatty acids and low intake of linoleic acid protect against AMD.

In this study, 2,454 people were followed for up to 10 years, where the incidence of AMD related to their intake of fish, nuts or fatty acids in the form of supplements was recorded.

The study showed a risk reduction of 31% and 35% in those who regularly ate fish and nuts or consumed n-3 fatty acids (fish oil and flaxseed oil) and the authors advise you to make an effort to attain this and avoid a diet rich in linoleic acid that occurs especially in the cheap cooking oils e.g. corn oil.

The second study showed that high intake of omega-3 fatty acids and olive oil reduces the risk of AMD, and that a high intake of trans fatty acids increase the risk.

Data from 6,734 people between 58 and 69 years was examined.
It turned out that the highest intake of trans fatty acids increased the risk of AMD by 76% compared to the lowest.

To the contrary a high intake of fish oil also here showed a reduced risk (15%).
But most compelling was that a high intake of olive oil reduced the risk of AMD with whole 52%.

The healthy essential fatty acids is beneficial for virtually every cell in the body and bad fats can cause just as much harm.

So again in these fat frightening times let´s strike a blow for the good fat we should eat much more of

By: Claus Hancke, MD

References:
• “Dietary fatty acids and the 10-year incidence of age-related macular degeneration: the Blue Mountains Eye Study,” Tan JS, Wang JJ, et al, Arch Ophthalmol, 2009; 127(5): 656-65.
• “Fat consumption and its association with age-related macular degeneration,” Chong EW, Robman LD, et al, Arch Ophthalmol, 2009; 127(5): 674-80

Promising treatment for macular degeneration

December 22, 2007

New orthomolecular treatment named as the “first choice” for AMD, otherwise known macula degeneration.

In the November 28, 2006 edition of the Vitality Council Newsletter we reported on a study which indicated that eating eggs, which contain the antioxidants lutein and zeaxanthine, has positive effects on AMD.

Almost two years ago we described a maybe even more important study undertaken at the University of Rome. It showed that normal recommended doses of simple dietary supplements prevents the most common form of blindness, the age related degeneration of the retina otherwise known as “retinal calcification.” This is what medical professionals call AMD. About one in eight people over the age of 85 have AMD severe enough to cause vision loss.

This study has recently been published again, giving us grounds to discuss AMD in more detail.

One does not become completely blind due to AMD. Peripheral vision is still maintained, enabling one to orient themselves in a room or go for a walk. Even so, AMD does cause handicap. Central vision is lost, which means that the ability to see shapely is lost. Therefore reading is impossible, seeing the TV, cooking, using tools, working on the computer, and recognising friends and family is difficult. A grey dot in the middle of the field of vision replaces everyone’s faces.

Central sight is governed by a yellow spot on the eye’s retina where the highest concentration of colour registering cones is found. This is why one of the first things lost in AMD is colour vision.

The changes in AMD can be directly observed on the retina when one looks into the eye. In the early stages it is characterized by small or larger deposits of yellowish waste products in the eye. Every one of these deposits represents a hole in the field of vision. This is unnoticeable so long as these hoses are small. Almost everyone over the age of 50 has at least one of these deposits, but if there are many deposits of greater size, the risk for blindness is great.

Severe cases of AMD can be characterised by an accumulation of larger deposits alone. This is called dry AMD. Another, and more dangerous, form is the so called wet AMD. In this form “leaky” blood vessels grow in under the retina, possibly as the body’s effort to bring more energy to the retina. The result is that liquid seeps out of these vessels causing total destruction of central vision. This can occur very quickly, but with quick intervention of an ophthalmologist (eye doctor) the new blood vessels can be blocked with laser treatment and vision can be saved in many cases.

The deposits and new blood vessels lead to the creation of dents in the retina. In severe cases scars form and pull on the retina. This leads to vision where straight lines seem bent. Often, but not always, one can discover the beginnings of AMD by holding a piece of graph paper at a normal reading distance and looking at it one eye at a time. If the lines are curved, an eye doctor should be consulted immediately.

New methodology
The republished study mentioned earlier is a double blinded study that showed with statistical certainty an improvement in the sight of patients with early stage AMD after they received a combination of n-3 fatty acids, Q10, and L-carnitine. The improvement in sight, which was slight, was first present after 3-6 months, after which sight remained stable until the end of the study one year later. This effect lasted even longer in a following study. It was also observed that the number of deposits decreased! This is important and very promising. Improvement occurred primarily for those with mild cases, but also for some with more severe AMD. Early diagnosis is paramount.

The theory behind these finds is that AMD is a disease of the mitochondria, which means that it is a disease which affects energy production in the cells. This is supported by the fact that cells from AMD affected retinas have more damaged mitochondria than normal cells when viewed under and electron microscope. The logic behind the treatment used in the study is therefore the following:

The vitamin-like substance carnitine is necessary for mitochondrial fat uptake and metabolism.

The fat is added as n-3 fatty acids, like those found in fish oil. N-3 fats compose no less than 30% of the structure of the retina!

Q10 can be understood as the motor’s sparkplug. It optimises metabolism so that energy production can start. The body’s own Q10 production falls with age and because of this, and carnitine deficiency, there becomes less energy available. It is hardly coincidental that patients with wet AMD have less Q10 in their blood than normal.

This important study powerfully indicates that quick action can stop newly diagnosed AMD. The authors strongly believe that their treatment should be the treatment of choice for newly diagnosed AMD.

By: Vitality Council

References:
1. Feher et al. Metabolic therapy for early treatment of age-related macula degeneration. Orv Hetil 2007;148:2259-68.
2. Feher et al. Improvement of visual functions and fundus alterations in early age-related macular degeneration treated with a combination of acetyl-L-carnitine and coenzyme Q10. Ophtalmologica 2005;219:154-66
3. Feher et al. Mitotropic compounds for the treatment of age-related macular degeneration. The metabolic approach and a pilot study. Ophtalmologica 2003;217:351-7
4. Blasi et al. Does coenzyme Q10 play a role in opposing oxidative stress in patients with age-related macular degeneration? Ophtalmologica 2001;215:51-54.
5. Feher J et al. Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Aging 2005;June 22: 15979212.

Fish oil is good for the heart and the brain

August 21, 2006

There is no doubt that fish oil is good for the heart. This has been shown by a new extensive survey on the subject. But no one knows how much is ideal.

The scientific interest for fish oil is enormous. Since September of last year, almost 800 articles about fish oil have been publicised in established journals.

This is with very good reason. Notably, fish oil contains two types of fatty acid, both of which are attributed with having a positive effect against many serious chronic diseases. If this is even in part true, it should be considered very imprudent not to receive fish oil every day. The primary disease that it is believed to prevent is cardiovascular disease, but there is also good reason to believe that fish oil works against, for example, depression, dementia, arthritis, and diabetes, even though there is no concrete evidence as of yet in these areas.

The two fatty acids are called EPA (eicosapentic acid) and DHA (docosahexaenoic acid). Together they compose one third of the contents of fish oil and two thirds of the concentrated fish oil products, which can be found in capsule form.

Much attention has been given to DHA which, contrary to EPA, is found in large amounts in the brain (14% of the cerebral cortex’s fat content) and in even greater amounts in the retina (22%). Breast fed children have much higher concentrations of DHA in their brains than bottle fed children (babies cannot produce DHA themselves). It is hard to believe that there are no consequences of receive too little.

There are an incredible number of adults who take supplements of fish oil daily to maintain their cardiac health.

But does it work?

Six months ago a group of English researchers maintained that it does not. They had looked at all of the relevant studies and then calculated the averages of their results. In their opinion, the results showed that fish oil neither protects the heart nor lengthens life span. This is just the opposite of what was previously believed.

This meta-analysis was strongly criticized and, as discussed in another of The Danish Vitality Council’s newsletters (“Fish Oil – Still indispensible”) there were so many question raised by the analysis that it lacked credibility.

Doubts regarding the dosage
This is now supported by a summary article from the distinguished American Journal of Clinical Nutrition. According to the head authors, a group of researchers undertook an extensive survey, taking “a large step forward” in spreading light into the darkness. There is no longer much doubt that fish oil reduces the overall risk of premature death and the risk of death due to a blood clot in the heart, and that it possibly reduces the risk of stroke.

Completing this survey was an extensive project. The researchers first read summaries of 8,039 scientific articles. They then picked 842 relevant articles from these to be read in their entirety. 46 articles of these 842 met the strict quality requirements and were studied further. The researches requirements regarded the length of the studies (at least one year), the dose of the fish oil given, and proper documentation.

How big are the advantages and how much fish oil should one take? This actually cannot be answered with certainty! The studies surveyed were too different regarding the dose given, the type of participants, the time taken, and so on to answer such questions. It is simply bad form to establish any averages, as the English researchers did. But if one wants to draw conclusions anyway, it is safe to guess that the overall risk of premature death and the risk of death due to cardiac disease can be reduced by 15-20% or more.

It is however nearly certain that fish oil helps those who have had a blood clot in the heart and wish to avoid another. But what about the dose, how much should one take?

Until more information surfaces, we should rely on the American Heart Association’s recommendations, which are based on estimates. Heart patients should receive 1 gr. EPA + DHA daily. This is the equivalent of about two large capsules of 1 gr. concentrated fish oil. Everyone else should receive at least half this amount. This can be achieved by eating fatty fish for dinner 1-2 times weekly.

There is a lot of knowledge lying in wait, not just about fish oil and the heart. More results will surface in the next year. While we wait we wait in the knowledge that it is important to get enough.

By: Vitality Council

References:
1. Wang C et al. n-3 fatty acids from fish or fish-oil supplements, but not á-linolenic acid, benefit cardiovascular disease outcome in primary- and secondary-prevention studies: A systematic review. Am J Clin Nutr 2006;84:5-17.
2. Deckelbaum R et al. n-3 fatty acids and cardiovascular disease: navigating toward recommendations. Am J Clin Nutr 2006;84:1-2.
3. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am J Clin Nutr 2006;83(suppl):1467S-76S.

www.ajcn.org

Children Get Smarter From Taking Fish Oil

October 24, 2005

The omega-3 fatty acid DHA in fish oil is an important building block for the brain. DHA deficiency in the first years of life may impact the normal development of the child’s brain.

Are children getting smarter from eating fish? Recent studies suggest that fatty acids in fish oil can help certain children with ADHD or dyslexia. But what about infants?

From the last third of fetal life to the end of the second year of life, children’s brains grow so strongly that one speaks of a brain growth spurt. During this period, a lack of a number of vital nutrients, such as fish oil, will affect brain function. The American Journal of Clinical Nutrition recently published a comprehensive review of what is known about fish and young children’s brains.

As a starting point, it is known that the polyunsaturated n-3 fatty acid DHA (docosahexaenoic acid) is highly concentrated in the cell walls of nerve cells. DHA is one of the two important n-3 fatty acids in fish oil. The other is EPA (eicosa-pentaenoic acid). EPA can be converted to DHA, and to a certain extent they can both be formed from the n-3 fatty acid alpha-linolenic acid in e.g. linseed oil.

But does it form enough in a child who is not breastfed or gets oily fish? The question is relevant. It is known that breast-fed babies have up to 40% more DHA in the brain’s gray matter than bottle-fed babies. In addition, it is known that young animals and probably also infants, even if they are neither near-sighted nor far-sighted, will see a little less sharply if they lack n-3 fatty acids. The significance of this is debated.

The importance of DHA has been investigated e.g. by comparing bottle-fed babies with breast-fed babies who got DHA from breast milk. Bottle babies have also been compared with other bottle babies who have received n-3-enriched formula. The children have been tested for intellectual and motor development, attention, etc.

Greater attention
In these kinds of experiments, it has been shown that breast-fed babies fare slightly better on average than bottle-fed babies. But is the difference due to DHA? Nursing mothers may function slightly better than non-nursing mothers, and may have better social relationships, etc. When you correct for this, the differences diminish. Furthermore, there are many other differences between milk substitute and mother’s milk other than the DHA content.

It becomes somewhat clearer when you compare bottle babies, where only half receive extra n-3 supplements. Here the results have been mixed, but on one point a difference has been seen quite consistently: Infants who receive n-3 supplements have a greater capacity for visual attention, i.e. to follow the things they see. This important result has also been obtained in experiments with monkeys.

In animal experiments with rodents, the clearest differences have been found. This is due, among other things, to the fact that these experiments can be set up, so that the difference in brain DHA becomes particularly large. Animals that are starved of n-3 fat become less agile, find it harder to find their way around a maze, etc. Even if there are only minor differences in brain DHA, the animals that do not get fish oils are weakened. Roughly speaking, this is what is known.

So what can be concluded? The authors do not claim that children should demonstrably have n-3 supplementation during the brain spurt. But they claim, after sifting through 258 scientific papers, that the need cannot be ruled out.

– Small differences in brain DHA, which most likely occur between bottle-fed babies with and without n-3 supplementation, may have effects that are currently difficult to detect but could be important, it says. Or to put it more simply: Remember to give babies and toddlers fatty fish or fish oil! They seem to be getting wiser from it.

By: Vitality Council

Reference:
Mc Cann J C, Ames, Bruce N. Is docosahexaenoic acid, an n-3 long chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioural tests in humans and animals. Am J Clin Nutr 2005;82:281-95

www.ajcn.org
www.iom.dk

Fish Oil is Effective Against Cardiac Arrest (Heart Failure)

July 7. 2004

With an interesting study doctors from the University Hospital of München have shown that fish oil may very likely prevent incidents of heart failure considerably.

According to the medical journal The Lancet, a German study can lead the way to using fish oil as a harmless and more savoury alternative to traditional heart medicine.

If cardiac atherosclerosis is the cause of death, then, in every other case, death occurs as unpremeditated cardiac arrest and the person affected will simply fall to the ground. In approximately every other one of these cases, the cardiac arrest is both the first and last symptom of the disease, and a blood clot is often the triggering factor.

In an interesting study, doctors of the Munich University Hospital have demonstrated that fish oil is supposedly to a very lage extent capable of preventing these cases of cardiac arrest. This took place in an experiment with ten patients suffering from heart problems who all had a high risk of dying of their disease and for that reason had had a defibrillator surgically implanted; this device is capable of re-vitalizing the heart if it stops.

The experiment was supposed to examine whether fish oil can protect against the rhythm disturbances that can lead to cardiac arrest and death. All ten patients were predisposed to attacks in which the heart beats with up to 200 beats per minute. This is very often a premonitory symptom of so-called ventricular fibrillation which is the cause of almost all cases of cardiac arrest. In ventricular fibrillation, the cardiac action is transformed into a very fast but weak tremble.

In the German study, the hazardous rhythm disturbances to which the patients were predisposed were stimulated with electrical impulses. As expected, provoking the attacks were an easy task. In three out of the seven, however, they did not succeed, and it turned out that – contrary to the other seven – they were used to eating fish 2 – 3 times a week. The other seven people had triggered attacks which were interrupted by the defibrillator.

The sensational thing about this was that after having been given fish oil as intravenous transfusions, it was impossible to provoke attacks in now five out of the seven patients! Left were only two patients who apparently were not protected by fish oil. Despite the infusion (equalling 12 g. of ordinary fish oil), one of them had a very low blood level of fish oil.

In total, eight out of the ten patients were so effectively protected by fatty fish or fish oil that provoking the deadly attacks in them was impossible. However, this German study is only a pilot study. Larger and more thorough studies must succeed in order for the effect to be considered reliable.

The result matches other findings from very large studies. The most famous one is the Italian GISSI study from 1999; a randomized trial with 10,000 men who had recently survived a cardiac thrombosis. It stated with great certainty that taking fish oil supplements resulted in a total reduction in mortality of 20% and a reduction in the risk of sudden cardiac death of more than 50%.

According to the editorial commentary of the magazine, the German study that was published in The Lancet can lead the way to using fish oil as a safe and more appetizing alternative to traditional heart medicine. First and foremost, fish oil can substantially reduce the danger of having a cardiac thrombosis!

By: Vitality Council

 

References:
1. Albert C. Fish oil – an appetising alternative to anti-arrhytmic drugs? Lancet 2004;363:1412-3.
2. Schrepf R et al. Immediate effects of n-3 fatty acid infusion on the induction of sustained ventricular tachycardia. Lancet 2004;363:1441-2.

www.thelancet.com
www.iom.dk

Fish Oil for the Heart

March 7, 2003

Essential oils in fish oil can prevent heart disease in elderly people. Quite many consumers and doctors have good experiences with this, but now it has also been confirmed by a study, recently published in the American Journal of Clinical Nutrition.

The trial included 360 persons at the age of 65, and the researchers found that a high concentration of the fatty acids DHA and EPA is associated with a lower risk of dying of blood clots in the heart.

– “Again, this is a good example of a preventive measure with natural substances such as fish oil, pays off” says Claus Hancke, chairman of the Vitality Council.

–  Fish oil reduces the risk of both blood clots and atherosclerosis, so there is common sense in taking fish oil, especially if you do not eat as much fish.

– Research results of this type unfortunately receive far too little attention in Denmark, on the contrary, we have often been told that dietary supplements are not useful at all. As a consumer, therefore, it can be difficult to know what to believe.

– Therefore, I believe that a sober-minded information about dietary supplements such as fish oil should be one of the obvious tasks for a future Council for Exercise and Nutrition, says Hancke, who is a specialist in general medicine and General Manager of the Department of Orthomolecular Medicine in Lyngby.

Science today knows very little about the link between heart disease in the elderly and the body’s content of these fatty acids, and therefore studies like this are welcomed by the doctors who work with orthomolecular medicine on a daily basis, popularly speaking: Biological medicine.

By Vitality Council

Reference:
American Journal of Clinical Nutrition, Vol. 77, No. 2, 319-325, February 2003.

www.ajcn.org
www.iom.dk