A stool with one leg

February 21, 2021

As previously quoted, they wrote in the Lancet (1) December 20th that in the future everything should be done to prevent and vaccinate and find methods for the treatment of Covid-19, and the Vitality Council can’t agree more that this stool should rest on three legs.

But the Danish government has not agreed to that. Since March 2020, it has focused on vaccines and only vaccines. – A one-legged stool.

Not only has the Government and the state media focused unilaterally on vaccines, but they have also actively censored information on both prevention and treatment. The government media has also been obediently accompanied by microphone holders from the major social and print media. It has been irrelevant to the censorship whether this information was sufficiently well documented.

Prevention

In the previous many newsletters, the Vitality Council has primarily advised on prevention in terms of keeping the immune system intact.

In our modern way of life with easy and fast industrial food of poor quality, improper preparation and overeating of carbohydrates, there is a great risk that our immune system will run out of essential nutrients. I have reviewed this topic again and again and will not bore you with this at this time.

But I will try to give a simple model for understanding the functioning of the immune system. This is because it is absolutely essential in prevention against Covid-19 and all sorts of other infections.

The immune system has a myriad of different cells to work with, and it’s pretty complicated, but let’s try a Pixie model; -a mousetrap:
There are two main systems, a so-called “innate” (non-specific) immune system, which works all the time, and an “adaptive” (specialized) immune system, which is adjusted by infection. The innate system attacks just about everything when, for example, a virus penetrates the body, but first the adaptive needs to get familiar with the new virus, adjust and activate the so-called T cells for attack, and teach the memory cells to remember for the next time how these virus are best attacked (antibodies).

Back to the mousetrap.

In the loft with all the mice (virus in the environment) we put a box (the body), with a small hole in the side (the innate immune system), and inside the box we put a couple of mousetraps (the adaptive immune system).

If we lack proper nutrition, vitamin D, selenium, vitamin C and magnesium, then the hole in the box is very large (the innate immune system fails). Then many mice can enter the box at once, and the traps (the adaptive immune system) do not have the capacity to snatch many mice. – Especially not if there is a lack of vitamin D, which is necessary to activate the T cells (2).

If, on the other hand, we get enough of the above nutrients, then we only have a small hole in the box (a good innate immune system), and then only a few mice enter the box (the body) at a time, and the adaptive immune system (the traps) can snatch them one by one.
Remember the Danish Minister of Health showing a graph with red and green curves some time ago.
If too many come too fast, then the hospital system would collapse.
The same way with our immune system.

If it is intact, the innate immune system will make sure to moderate the load so that the adaptive defense can have time to get to know the enemy and calibrate its cannons accordingly. Hereby we avoid the overload that results in the so-called cytokine storm, which is the start of all the accidents.

That is why it is so important to provide proper nutrition and supplement with vitamin D, vitamin C, selenium and magnesium.
And remember in the dark winter: Vitamin D in the blood should rise to 30-50 ng/ml (75-125 nmol /L.)
If you can’t get the blood sample taken locally, there are several excellent options for home testing i Denmark (3,4).

Treatment

Often you see pseudo-science, where vitamins and minerals are used as treatment after disease outbreaks, and even often in relatively small doses. It is pointless and only suitable to show that it does not work. These nutrients are for prevention.
An exception, however, is Vitamin C in high doses given intravenously under medical supervision.

There is only scant evidence here at the Covid-19 pandemic (5), but previously there is ample evidence of an effect on viral infections, as mentioned in the newsletter May 20th 2020.

There have been numerous experiments with hydroxychloroquine, which, however, have yielded quite varying results, and research into it is unfortunately largely discontinued.

Ivermectin is a remedy against scabies and certain parasites, and reportedly also has an effect on Covid-19 (6). The Indian health authorities have approved a treatment with Ivermectin, Doxycycline and zinc.
Ivermectin costs about 100 times as much as hydroxychloroquine, so it will probably never be the big success.
One week ago, Israeli researchers published (7) a preliminary result of treatment with inhalation of CD24 exosomes in 30 hospitalized moderately to severely ill Covid-19 patients. The 29 recovered in 3-5 days, the last one also recovered, but after more than 5 days. It should be a cheap method without side effects, so it sounds promising. CD24 exosomes are proteins that, like vitamin D, control T cell activation and can attenuate the cytokine storm.
We are anxiously awaiting news from the Israeli researchers.

What now?

After all, health authorities and the government are on thin ice right now, unless they manage to be saved by the globally declining infection rates and death rates.
You vaccinate and vaccinate, but to no avail on the closure of the society. The function of the vaccine is primarily to alleviate the disease in the vaccinated person.
Even though we have been vaccinated, we can still be infected and pass it on to others, because the virus is still there. Therefore, even the vaccinated must continue with face masks, despite the poor evidence of the effect of the hated face masks.
On top of this, there are still new mutations. Currently the English with increased infection of children, which we see in Kolding these days, but on the horizon lurks the South African and two different Brazilian varieties, which are even less sensitive to the antibodies we have received from previous infection and from vaccination.
Well, then the vaccine just has to be adjusted, and then the population just has to be vaccinated again.
Okay. -How many times? So far, in 2 months we have only vaccinated 3% of the population. So good luck with the task if it all has to start all over again.
It seems like a Sisyphean task if the Government will continue to focus only on the one-legged stool.
As a solution to this chaos, the Government is now proposing a wild testing strategy, where we will be tested twice a week next year. This will cost just as much as the overall healthcare system, and one does not have to be a nuclear physicist to figure out that this will massively affect all other diagnoses in the healthcare system.
And the virus will not disappear either due to this.
It’s a bit like setting up photo traps to detect an army of soldiers invading the country. No defense, just registration while the invasion rumbles towards the defenseless population.
When the hopelessness of this strategy eventually dawns on the Government, there is hope that the one-legged stool will be given two more legs, namely prevention and treatment.
Then every single person can be informed about the possibility of defending themselves against Covid-19.
Only then will the disease become so mild that it resembles a common flu, by which we can drop the hated face masks and the lockdown of society.

May we ask for the three-stringed strategy as soon as possible thank you.

A stool with one leg is doomed to tip over.
A stool with three legs does not tip over.
No matter how uneven the surface is, it will not even tilt.

Take care of yourself and others.

Claus Hancke MD
Specialist in general medicine

References

  1. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Piroth L et al, Dec.2020, Lancet. https://www.sciencedirect.com/science/article/pii/S2213260020305270
  2. Geisler C, Ødum N et al. 2010, Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nature Immunology 2010;11:344-349.
    https://www.nature.com/articles/ni.1851
  3. https://www.webapoteket.dk/saar-og-sygepleje/selvtest/quicktest-d-vitamin-p-222465
  4. https://www.cerascreen.dk/products/test-for-d-vitamin
  5. Alberto Boretti, Bimal Krishna Banik (2020) Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome PharmaNutrition. 2020 Jun;12:100190.  Published online 2020 Apr 21. https://www.sciencedirect.com/science/article/abs/pii/S2213434420300153
  6. Caly L et al, 2020, Antiviral Research, 178, june 2020, 104787.
    https://www.sciencedirect.com/science/article/pii/S0166354220302011?via%3Dihub
  7. https://clinicaltrials.gov/ct2/show/NCT04747574

Update on Corona virus

August 26, 2020

Since the last newsletter from May 28, things have gone well here in Denmark.
On the other hand, viruses have become widespread, especially in those countries that have not taken the spreading of infection seriously.
In the past month, however, localized infection clusters have emerged in various places here in Denmark as well, especially in immigrant communities.
The reasons for this have been mentioned in the previous newsletters, whose advice is still valid, so I will not repeat it here, but instead focus on what has happened in the last 3 months.

Studies
In a literature study(1) from Norwegian, Russian and Swedish public health institutes six researchers have concluded that early intervention with Zinc, Selenium and Vitamin-D can alleviate the course of the disease, and virtually prevent the cytokine storm, which is the process responsible for the destruction of tissues, microthromboses, inflammation, etc. -the whole cascade that can take the life of the Covid-19 sick persons.

An almost simultaneous study(2) from Germany analyzed Serum-Selenium and Serum-Selenoprotein P, and both values were significantly lower in those who did not survive Covid-19.
(Selenium: 53.3 ± 16.2 vs. 40.8 ± 8.1 μg / l, Selenoprotein-P: 3.3 ± 1.3 vs. 2.1 ± 0.9 mg / L p<0.001). These results must be said to be highly relevant in our country, where we consume so little selenium. This study falls nicely in line with the former study.

On August 3, an article was published in the Lancet(3) which strongly calls for increased intake of vitamin D based on solid literature reviews.
This also falls in line with the first study mentioned above.

And, finally, there is a meta-analysis(4) of the role of vitamin D in the development of acute respiratory infection. It includes 30,000 people in controlled trials (RCTs), and has shown significantly reduced risk of acute respiratory infection already at 10-25 µg of vitamin D daily.
This confirms a previous meta-analysis(5), which also found a significant inverse correlation between the risk of acute respiratory infection and the vitamin D content in the blood.
All of the above studies are nicely in line with the advice mentioned in the five newsletters from May.

Authorities distribute vitamins
Azerbaijan has registered 35,000 Covid-19 cases in a population of 10 million. Of these, 1,800 were hospitalized and 508 died.
Here, the Ministry of Health has provided more than 3,500 Covid-19 patients with a free “medicine package” containing: Vitamin C, Vitamin D, Magnesium, Selenium, Zinc and Paracetamol.
The idea is then that the patients stay at home and treat themselves there.
Every day they are then contacted by the local hospital clinic and have to answer a series of questions, just as the doctor checks that they are taking their pills.
So far, a significant reduction in the number of hospitalizations in this group has been observed(6).

You can only shout cheers when you see authorities who can think outside the box and dare to start such a project. My guess is that the trend will continue and that home treatment will continue to reduce hospital admissions in Azerbaijan.

The idea is not bad because you initiate a completely harmless treatment of a, for some people, -dangerous disease.
But why wait until they get sick?

With timely care, one can improve the immune system of the entire population if one simply provides information about these supplements and their significance.

What could be done here in Denmark is to provide subsidies to the vulnerable groups, especially residents of the country’s nursing homes, who are completely dependent on the public perception of vitamins and minerals. If their own doctor does not prescribe a vitamin supplement, then residents are often denied help to get the supplements, despite their own desire. They are completely dependent upon the doctor’s knowledge or lack thereof. I think Danish authorities and medical staff would be shocked if we measured the level of vitamin D in the country’s nursing home residents.
If you do not want to use public funds to donate these subsidies to the residents, then you can at least make sure that both residents and their relatives are informed.

These newsletters on Covid-19 are unfortunately necessary as this knowledge and the scientific back-up are neglected in the public advice to the Danish population.

Take care of yourself and others

Claus Hancke MD
Specialist in general medicine

References

  1. Alexander J, Alehagen U et al. (2020) Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Nutrients 2020, 12, 2358.
  2. Moghaddam A, Heller R et al. (2020) Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients 2020, 12, 2098.
  3. Martineau A, Forouhi N (2020) Vitamin-D for Covid-19: a case to answer. Lancet 2020;8:735-6.
  4. Joliffe D, Martineau A, Damsgaard Camilla et al. (2020) Vitamin D supplementation to prevent acute respiratory infections: Systematic review and meta-analysis of aggregate data from randomised controlled trials. medRxiv BMJ (endnu ikke peer reviewed) 17.juli 2020.
  5. Martineau A et al. (2017) Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data.
    BMJ 2017;356:i6585.
  6. lmahamad A, (2020) 3.500 covid-19 patients provided with free medication. Azernews 18.august 2020. https://www.azernews.az/healthcare/168099.html

Be prepared for the next Corona epidemic

The population is not

May 29, 2020

The Corona is spreading more slowly now, and, here in Denmark, Covid-19 is gradually infecting fewer and fewer people and we are more aware of protecting ourselves against it.

There have been good effects from keeping our distance and from maintaining good hygiene in which we have all been well instructed.

Much to the surprise of the Danish Serum Institute, less than 2% of the Danish population has had the disease, and only a few of these individuals may have obtained immunity to SARS-CoV-2, which the virus is called.
This means that more than 98% have not been infected and are completely without immunity. So forget about herd immunity.

The Danish population is just as vulnerable it was were in March when it all started.

Let’s try to summarize what we know and what we can do about it.

What do we know now?
SARS-CoV-2, which is the virus responsible for the current Covid-19 pandemic, is characterized in that it – like the influenza virus – triggers a reaction with the release of a number of signaling molecules such as interleukins, interferons, and lymphokines.

When this release is powerful, it is called a “cytokine storm”, and with Covid-19, it is so powerful that immune cells begin to damage the tissues where the process is taking place, and, in this case, it is primarily the lung tissue that is damaged.

During the cytokine storm, a violent inflammatory response and increased release of free oxygen radicals are created, which further damages the lung tissue due to the subsequent inflammatory microcoagulation seen in the pulmonary vessels. Adding too much oxygen at this stage will only aggravate the situation, which several anesthesiologists have experienced when Covid-19 patients’ conditions worsen when they are put on a respirator.

What can we do about it
Thus, it is primarily about attenuating the fatal cytokine storm.
Here vitamin D, magnesium, selenium, and vitamin C are particularly important as they specifically inhibit this cytokine storm and the subsequent inflammatory microcoagulation in the pulmonary vessels.
If the level of these essential substances in the body is high enough then you will have a subdued cytokine storm and thus attenuated symptoms, as seen during influenza infection. Fresh extract of Coneflower (Echinacea) has also been documented in several scientific studies to effectively inhibit this cytokine storm.

It should be obvious to protect ourselves by promoting such harmless and inexpensive remedies, but unfortunately in the medical and pharmaceutical world, one tends to stare blindly at the most expensive solutions.
Medical professionals were first intrigued by the antiviral drug Remdesivir, which could shorten the disease period of Covid-19 from 15 to 11 days. This fascination has now been replaced by a new one, another drug, an experimental cancer drug, Bemcentinib that may prevent viruses from entering the cells. A phase II trial is underway for 120 people, and we hope we will be able to get the result in a few months.

Well, it is excellent that medical professionals try to find a medicine that can help in this situation, but is it absolutely necessary to find a new, expensive medicine with side effects, when there are other far cheaper options without side effects?

The long awaited vaccine
While all this is going on, the pharmaceutical industry is working full speed on a vaccine. A vaccine against an RNA virus is very difficult to make, and using a vaccine is especially problematic because viruses constantly mutate and thereby often change the immune response.

No vaccine has ever been safety-tested, in the same way that medicine is tested, and this is a bit problematic because in recent years, the industry has started to add substances whose purpose is to stimulate the immune system for effective antibody formation. And stimulating antibody formation is good enough, too, but the safety of these substances has never been investigated. In Denmark, the use of mercury (thimerosal or thiomersal) in childhood vaccines was stopped from 1992 and in influenza vaccines from 2004, with the exception of the vaccine in 2009, which was an embarrassing exception. The toxic mercury should never be used again for human use – neither in the teeth, for that matter.

But in recent years aluminum has been added in the form of nanoparticles as well as squalene emulsions. These adjuvants have not been safety tested. It has just been noted (WHO has noted) that the number of side effects is not greater than is usually seen with vaccination. Aluminum is a neurotoxin, but it has been used in vaccines in the form of various aluminum salts since 1930, so in that form it probably isn’t particularly harmful. The problem is that nanoparticles are now being used that cannot be stopped by a cell membrane. They can penetrate all tissues.
It cannot be ruled out that it is safe to use these additives. It’s just never been investigated.

It should be a simple task to make a study with each of these ingredients against a real placebo such as brine.
We have many excellent vaccines, so let’s not be vaccine deniers. Let’s welcome a SARS-CoV-2 vaccine when it arrives, and then just hope it is properly safety tested. Of course, this hope becomes a requirement if we are to be mandatory vaccinated.

Of course, the Coronavirus will return
When and how bad we do not know, but it will come.
As mentioned in the Vitamin C newsletter, one of Europe’s experts in Covid-19, Professor Christian Drosten from the University of Berlin, has stated that the second wave could be tougher than the current one.
And since more than 98% of the Danish population is without immunity against it, we should not sit with our hands in our laps and wait for a vaccine.

We need to be proactive.
We need to make sure that we have enough of the nutrients that can reduce the risk of our getting sick, and especially the nutrients that can dampen the cytokine storms, so that we get a mild course of illness if we get sick anyway.

Especially old people and people who eat only very little, who may also be weakened by chronic disease, will do well by supplementing the diet in order to be well equipped with an optimally functioning immune system as the next virus threat approaches.

An appropriate daily dose for a normal-weight adult will typically be:

  • Vitamin A: 1-2 mg
  • Vitamin B6: 4-5 mg
  • Vitamin C: 2-3,000 mg
  • Vitamin D3: 75-100 µg
  • Selenium: 100-200 µg
  • Zinc: 20-30 mg
  • Magnesium: 200-300 mg

Note: The low dose is for those weighing less than 70 kg (155 pounds / 11 stones).

If you start now, you will be prepared in the fall. This is an obvious strategy for the country’s nursing homes.

This is the fifth and final Covid-19 newsletter.

Unfortunately, the five newsletters are necessary as this knowledge and scientific back-up are neglected in the public counseling of the population.

Take care of yourself and others,

Claus Hancke, MD,
Specialist in general medicine

Refs:

  • McGonagle D et al. (2020) Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet May 7, 2020:1-9
  • Zhang Y, Leung D, Richers B, et al. (2012) Vitamin D Inhibits Monocyte/Macrophage Proinflammatory Cytokine Production by Targeting MAPK Phosphatase-1. Journal of Immunology. 2012;188(5):2127-2135.
  • Alberto Boretti, Bimal Krishna Banik (2020) Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome PharmaNutrition.
    2020 Jun;12:100190. Published online 2020 Apr 21.
  • Sharma M, Anderson A et al.(2009) Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antiviral Research, 2009;83(2):165-170.
  • Cannell JJ, Zasloff M, Garland CF et al. (2008) On the epidemiology of influenza.
    Virol J. 2008;5:29.
  • Gorton HC, Jarvis K (1999) The effectiveness of vitamin C in preventing and relieving the symptoms of virus-induced respiratory infections. J Manip Physiol Ther, 22:8, 530-533
  • Hemilä H (2003) Vitamin C and SARS coronavirus Journal of Antimicrobial Chemotherapy, Volume 52, Issue 6, December 2003, Pages 1049–1050
  • WHO Global advisory committee on vaccine safety 2020 (ikke ændret siden 2006). https://www.who.int/vaccine_safety/committee/topics/adjuvants/squalene/Jun_2006/en/

Never Calcium Without Magnesium

January 17, 2008

Calcium tablets as monotherapy increase the risk of blood clots in the heart and brain.

Last year, the British Medical Journal in their web version published a scientific article with the above-mentioned gloomy message.

1,471 healthy women over 55 years were randomly divided into two groups, one with 732, who took a supplement of calcium citrate for 5 years and a group of 739 who took placebo.

During these five years, they were examined every six months, and for each year, the distance between the two groups increased with statistic significance.

It was found that in the group who took calcium tablets, there was a significant increase in the risk of blood clots in both the brain and the heart.

The authors are surprised by the result and have reservations until the matter has been investigated further with more studies.

But do we have to wait five years for a new study of this result?

Is not it predictable?

Most people who have experience with the use of minerals for disease prevention are well aware that you should never take calcium without taking magnesium at the same time.

Magnesium is the key
(If you think it becomes too biochemical, then just read the conclusion at the end).
Magnesium sits like a bolt in the calcium channel of the cell membrane.

The moment calcium wants to enter a cell, magnesium closes the door and when calcium wants leave the cell, magnesium will open up. It’s the opposite in bone cells.

Therefore, the cells in the soft tissues are almost empty of calcium. The calcium concentration outside of a cell is about 10,000 times as high as within a cell. Thanks to magnesium.

If we lack magnesium, the calcium channels will open.

This means that through the open calcium channels, calcium flows into the cells, causing the cell to cramp and, in the long term, (hours) destroy its mitochondria.

The cramp causes immediate contraction of the blood vessels due to the smooth muscle cells around the small arteries, resulting in increasing blood pressure and risk of brain hemorrhage and destruction of calcification plaque and thus risking a blood clot in the heart. At the same time, the energy production of the cell is minimized due to the destruction of the energy-producing mitochondria with their vital content of coenzyme Q10.

This not only results in less energy production in the cells, but also a smaller consumption of oxygen absorbed in the cell, which in turn means that a greater proportion of this oxygen are then used to produce harmful free radicals, IF there is iron present as a catalyst for this process, and this is precisely the case in this group of women who no longer menstruate.

Then the roulette runs with destruction of the cell membrane and the surrounding cells from within, because now the cell has suddenly had its own little “Chernobyl meltdown”.

If we lack magnesium, we have no control over the distribution of calcium, and it is distributed more or less evenly throughout the cell phase, ie. both in bone cells and in soft tissue cells, muscle cells, skin cells, connective tissues, etc.

But are we lacking magnesium?
Yes we are. More than 70% of the population do not even get the recommended daily allowance of 300 mg of magnesium.

Why not?

The food has gradually become more and more low in magnesium. In part, the industrialization of the diet has resulted in a large loss of magnesium in the finished product, and we eat less vegetables where we find this magnesium and when we cook the vegetables, we pour the magnesium out with the boiling water.

Furthermore, many elderly people loses magnesium because they take diuretic medicine or because they drink too much coffee.

70% of research participants with low intracellular magnesium are more than sufficient to explain the significant increased risk associated with calcium intake as monotherapy.

There is therefore no surprise in the achieved result, and it should not be necessary to wait a lot of years to take extra magnesium along with ones calcium supplement. This will not only benefit muscles, heart, brain and bones, but also a variety of processes in the body that rely on the more than 300 enzymes for which magnesium is required.

So: Never take calcium without magnesium!

By: Claus Hancke, M.D.

 

References

Mark J Bolland, P Alan Barber, Robert N Doughty, Barbara Mason, Anne Horne, Ruth Ames, Gregory D Gamble, Andrew Grey, Ian R Reid. Vascular events in healthy older women receiving calcium supplementation: randomised controlled trial. BMJ published online 15 Jan 2008;doi:10.1136/bmj.39440.525752.BE

Magnesium benefits asthmatics

January 8, 2007

Almost everyone gets far less magnesium in their diet than people got in the past. It seems that this greatly worsens life for asthmatics. But the problem has hardly been investigated.

One has to take magnesium seriously. It is a vital mineral, but many people get far less than the 3-400 milligrams a day that are considered adequate. Before the industrialization, we got an average of approx. 500 mg a day (some have said 1,000). Today, many get less than 250.

Several reports in recent years have linked magnesium deficiency to asthma and allergies. In 1994, for example, an English study showed that the more magnesium asthmatics got, the better their lung function. Those who received 500 mg a day had 25% better lung function than those who received 400 – judged by the amount of air you can exhale in one second.

Asthma was not very common in the past. Today, it is a fearsome widespread disease. Approx. every tenth Danish school child has asthma. In Aberdeen and Philadelphia, every fourth child at the age of eight has it. The frequency in Denmark has more than tripled since the 1970s, and no one has any reasonable explanation. What if magnesium deficiency is part of the cause?

During an asthma attack, the bronchi contract so that the air can neither get out nor in – especially not out. But as early as 1912, the famous physician Trendelenburg – it was he who suggested that you should have your legs up in the air if the blood pressure drops – showed that magnesium has the opposite effect. It dilates the bronchi. It was on cows, but in 1936 it was also detected on humans.

Still, only two randomized studies have actually been made to investigate the effect on asthma. One (from 1997) showed that magnesium reduces symptoms. The second (from 2003) showed nothing, which was probably due to the patients receiving so much medication that there was nothing to improve.

Less allergy
Now a team of Brazilian doctors has made a third attempt. They studied 37 children and adolescents (7-19 years) with persistent moderate asthma and allergies. All received medical treatment in the form of an asthma spray with a bronchodilator in addition to adrenal cortex hormone. In addition, they had an acute-acting spray for use in aggravation.

In 18 of the children, this treatment was supplemented with 300 mg of magnesium daily for two months. The rest received placebo (“calcium pills”). Who got what, was decided by secret drawing of lots.

Magnesium helped. Those who received magnesium had significantly fewer days of asthma exacerbation during the two months (12 and 17, respectively). Despite this, they also had significantly fewer days in which to resort to the acute-acting spray (7 and 12, respectively). Although the experiment was small, the differences were statistically extremely reliable. In addition, those who were treated responded far less to the traditional skin prick tests used to examine for allergies. They actually became less allergic! Finally, one could directly measure that their bronchial mucosa was far less irritable.

The conclusion is obvious: Trendelenburg’s old discovery holds water with great certainty. But magnesium is a very cheap mineral (a prolonged-release tablet with 360 mg costs a little over a penny), which no one can patent. Who will pay for further research?

Niels Hertz, MD


Referencer:

1. Gontijo-Amaral C et al. Oral magnesium supplementation in asthmatic children: A double-blind placebo controlled trial. European Journal of Clinical Nutrition 2007: 61:54-60.
2. Britton J et al. Dietary magnesium, lung function, wheezing, and airway hyperreactivity in a random adult population. Lancet 1994;344:357-62

www.nature.com/ejcn/index.html
www.thelancet.com

Children with ADHD lack magneisum

March 17, 2006

A majority of restless ADHD children were lacking in magnesium. All children improved when given magnesium and B6-vitamin supplements.

In almost all kindergarten classes there are one or two so-called ADHD-children giving the teacher a hard time with their continuous restlessness, running about, violent behaviour and inattentiveness. (ADHD stands for Attention Deficit, Hyperactivity Disorder).

Two studies – the only ones conducted – have now shown that a combination of magnesium and vitamin B6 helps.

Why should magnesium help? In a French study 52 children, all diagnosed with ADHD, were examined. The children were typically six years old. If the serum level of magnesium was measured in a normal blood test, normal values were seen. But since almost all magnesium in the body is found inside the cells, this says nothing. It is inside the cells that we must look.

On average, the children only had 4/5 of the amount of magnesium in the cells (in this case, the red blood cells) present in normal adults. They were deficient in magnesium!

Therefore they were given a daily supplement of 6 mg. of magnesium and 0.8 mg. Vitamin B6 per kilo body mass for one to six months. After this, no less than all the children got better. For example, at the beginning of the experiment 26 of the children were deemed physically aggressive. After four months, only six. At the same time their ability to concentrate and their attention span improved (evaluated in an approved manner). Statistically, these results were quite credible.

A weakness in the French study was that it was a so-called open study. There was no untreated control group and the treatment was not blind. This leaves room for coincidence and over-interpretation. On the other hand, the study showed exactly the same as a similar study from 1997. Also, the improvements occurred at the same time as the measurable magnesium deficiency disappeared. When this had happened, treatment was stopped.

Magnesium in the Diet
If it works, it may not be that surprising. The same course of treatment seems to have helped women suffering from irritability and imbalance due to PMS (PreMenstrual Syndrome) in several studies. On top of this comes the generally sedative effect on nerves (magnesium can be used as a local anaesthetic). Magnesium has a relaxing effect on muscles. Does magnesium also have a calming effect on the central nervous system?

Another question is why ADHD-children apparently are deficient in magnesium. The French suggest that genetic factors play a role, but in a majority of the parents, it was not just one, but both of them who were deficient in the mineral. This suggests that nutrition is more important.

A British evaluation indicates that foodstuffs’ content of magnesium has decreased in the past 60 years. It is estimated that today there is 24 and 16 percent less magnesium in vegetables and fruit, respectively, than in 1940. On top of this is an increase in the consumption of sugar. Those who dauntlessly claim that 10 percent of the calories in the diet can be contributed by sugar, are also saying that you can easily omit 10 percent of the diet’s magnesium. Furthermore, less physical work means a decreased need for food generally, thereby decreasing the amount of magnesium we consume. A typical magnesium consumption rate today (3-400 mg. a day) is probably half of what it was 100 years ago.

Something else to consider also is that there is a row of more or less confirmed observations of connections between behavioural disorders in children and teenagers (and criminals) and an unhealthy diet. Is this purely coincidence?
It will take several months to rectify a magnesium deficiency, but it might be worth it to try.

By: Vitality Council

References:
1. Mousain-Bosc et al. Magnesium VitB6 intake reduces central nervous system hyperexcitability in children. J Am Coll Nutrition 2004;23:545S-548S
2. Starobrat-Hermelin et al. The effects of magnesium physiological supplementation on hyperactivity in children with attention deficit hyperactive disorder (ADHD). Magnes Res 1997;10:143-8

www.jacn.org

Magnesium, Research references

January 1999

1. Abraham AS, Eylath U et al. Serum magnesium levels in patients with acute myocardial infarction. New Eng J Med 296: 862-863, 1977.
2. Abraham GE, Flechas JD. Hypothesis: Management of fibromyalgia: rationale for the use of magnesium and malic acid. J Nutr Med 3:49-59, 1992.
3. Annand JC. Pyridoxine and magnesium in the treatment of shock. Lancet ii: 340-1, 1957.
4. Berger DS, Reiter WM, Vorce DE, et al. Prevalence of red blood cell magnesium deficiency in HIV-1 infected patients and its association with fatigue and myalgia. Abstract. J Am Coll Nutr 13; 5: 522, 1994.
5. Brenton DP, Gordon TE. Fluid and electrolyte disorders. Magnesium. Br J Hospital Med 1: 60-69, 1984.
6. Curry DL et al.:Magnesium modulation of glucose-induced insulin secretion by the perfused rat
7. pancreas. Endocrinology 101:203, 1977.
8. Dahle LO, Berg G, Hammar M et al. The effect of oral magnesium substitution on pregnancy-induced leg cramps. Am J Obstet Gynecol 1995; 173: 175-180.
9. DeLuca HF. The Vitamin D system in the regulation of calcium and phosphorus metabolism. Nutr Rev 1979; 37: 161-193.
10. Dreosti, IE. Magnesium status and health. Nutr Rev 1995; 53: S23-S27.
11. Dunn MJ, Waber M. Magnesium depletion in normal man. Metabolism 1966; 15: 884-895.
12. Eisinger J, Bagneres D, Arroyo P, et al. Effects of magnesium, high energyphosphates, piracetam and thiamin on erythrocyte transketolase. Magnes Res 7(1):59-61, 1994.
13. Eriksson J, Kohvakka A. Magnesium and ascorbic acid supplementation in diabetes mellitus. Ann Nutr Metab 394:217-23, 1995.
14. Fletcher MP, Gershwin ME, Keen CL et al. Trace element deficiences and immune responsiveness in humans and animal models. In: Chandra RJ, ed. Nutrition and immunology. New York: Alan R. Liss. 1988: p 215-239.
15. Hallson PG, Rose G, Sulaiman SM. Magnesium reduces calcium oxalate crystal formahon in human whole unne. Clin Sci 62: 17-19, 1982.
16. Hodgkinson A, Marshall DH, Nordin BEC. Vitamin D and magncsium absorption in man. Clin Sci 1979; 57: 121-123.
17. Howard JMH. Magnesium deficiency in peripheral vascular disease. J Nutr Med 1990; 1: 39-49.
18. Johansson G et al. Biochemical and clinical effects of prophylactic treatment of renal calcium stones with magnesium hydroxide. J Urol 124; 6:770-4, 1980.
19. Johansson G, Backman U, Danielson B et al. Magnesium metabolism in renal stone formers. Effects of therapy with magnesium hydroxide. Scand J Urol Nephrol 53: 125-130, 1980.
20. Johansson G. Magnesium and renal stone disease. Acta Med Scand; suppl 661:13-18, 1982
21. Johansson G et al. Effects of magnesium hydroxide in renal stone disease. J Am Coll Nutr 1, 2:179-85, 1982.
22. Jones JE, Manalo R, Flink EB et al. Magnesium requirements in adults. Am J Clin Nutr 1967; 20: 632.
23. Laban E, Chardon GA. Magnesium and cardiac arrhythmias. Nutrient or drug? J Am Coll Nutr 1986; 5: 521-532.
24. Lemke, MR. Plasma magnesium decrease and altered calcium/magnesium ratior in severe dementia of the Alzheimer typc. Biol Psychiatry 1995; 37: 341-343.
25. Lindberg J, Harvey J, Pak CYC. Effect of magnesium citrate and magnesium oxide on the crystallization of calcium salts in urine: changes produced by food-magnesium interaction. J Urol 143; 2:248-51, 1990.
26. Lyon E, Borden T, Ellis J, Vermeulen C. Calcium oxalate lithiasis produced by pyridoxine deficiency and inhibition with high magnesium diets. Invest Urol 4: 133-142, 1966.
27. Posacki C, et al. Plasma, Copper, Zinc, and Magnesium Levels in Patients with Premenstrual Tension Syndrome, Acta syndrome : Obstet Gynecol Scand 73; 452-5, 1994.
28. Prien EL, Gershoff S. Magnesium oxide-pyridoxine therapy for recurring calcium oxalate urinary calculi. J Urol 112:509-512, 1974.
29. Rattan VF, Sidhu H, Vaidyanathan S, et al. Effect of combined supplementation of magnesium oxide and pyridoxine in calcium-oxalate stone formers. Urol Res 22; 3:161-5, 1994.
30. Resnick LM, Gupta RK, Laragh JH. Intracellular free magnesium to erythrocytes of essential hypertension. Relation to blood pressure and serum divalent cations. Proc Nat Aca Sci 1984 81: 6511-6515.
31. Romano TJ, Stiller JW. Magnesium deficiency in fibromyalgia syndrome. J Nutr Med 4:165-7, 1994.
32. Romano TJ. Magnesium deficiency in systemic lupus erythematosus. J Nutr Environ Med 7: 107-11, 1997.
33. Rude RK, Olerich Ml. Magnesium deficiency: Possible role in osteoporosis associated with gluten-sensitive enteropathy. Osteoporosis Int 6; (6):453-61, 1996.
34. Rushton H, Spector M. Effects of magnesium deficiency on intra tubular calcium oxalate formation and crystalluria in hyperoxaluric rats. J Urol 127: 598-604, 1982.
35. Seelig MS. The requirement of magnesium by the normal adult. Am J Clin Nutr 14: 342-390, 1964.
36. Seelig MS, Heggtveit H. Magnesium interrelationships in ischemic heart disease. Am J Clin Nutr 27: 59-79, 1974.
37. Seelig MS. Magnesium in oncogenesis and in anti-cancer treatment interaction with minerals and vitamins. In: Ouillian, P, Williams, RM, eds. Adjucant nutrition in cancer treatment. Publ Cancer Treatment Res Foundation, 15: 238-318, 1993.
38. Schmiedl A, Schwille P. Magnesium status in idiopathic calcium urolithiasis – An orientational study in younger males. Eur J Clin Chem Clin Biochem 34:393-40, 1996.
39. Sheehan JP, Seelig MS. Interactions of magnesium and potassium in the pathogenesis of cardiovascular disease. Magnesium 3: 301-314, 1984.
40. Shils, ME. Magnesium. In: Present knowledge in nutrition. 7th edn. Washington, DC: Nutrition Foundation. 1996: p 256-264.
41. Shils ME. Experimental human magnesium depletion. Medicine 1969; 48: 61-85.
42. Shils ME. Experimental human magnesium depletion. I. Clinical observations and blood chemistry alterations. Am J Clin Nutr 1964; 15: 133-143.
43. Shine Kl. Myocardial effects of magnesium. Am J Physiol 1979; 237: H413-H423.
44. Singh RB, Cameron EA. Relation of myocardial magnesium deficiency to sudden death in ischemic heart disease. Am Heart J 1982; 103: 399-450.
45. Sjogren A, Edvinsson L, Fallgren B. Magnesium deficiency in coronary artery diseases and cardiac arrhythmias. J Int Med 1989; 226: 213-222.
46. Takahasi E. The magnesium:calcium ratio in the concentrated urines of patients with calcium oxalate calculi. Invest Urol 10:147, 1972.
47. Tucker MM, Turco SJ. Human nutrition. Philadelphia: Lea & Febiger. 1983: p 25-28.
48. Wacker WEC, Parisi AF. Magnesium metabolism. N Eng J Med 1968; 278: 658-663, 712-717, 772-786.
49. Watson WS, Lyon TDB, Hilditch TE. Red cell magnesium as a function of cell age. Metabol Clin Exp 1980; 29: 397-399.
50. White JR et al. Magnesium and Diabetes: A Review. Ann Pharmacother 27: 775-80, 1993.
51. Wunderlich W. Aspects of the influence of magnesium ions on the formation of calcium oxalate. Urol Res 1981; 9: 157-160.

Sources:
Joseph E. Pizzorno Jr., Michael T. Murrey & Melvyn R. Werbach.