Vitamin D Together With NSAID Medicine Fights Prostate Cancer

September 3, 2005

A world-famous Vitamin-D researcher has initiated a study with a very simple treatment of cancer of the prostate. If expectations are met, then it could result in a revolution in the treatment of the most frequent form of cancer in men.

Among men over 60 at least every other have cancer in the prostate, usually without knowing it. It has been discovered many years ago by investigating men who died for some other reason. Cancer in the prostate is typically a disease that you do not die from – but with! Nevertheless, it is the most frequent cause of cancer among men after lung cancer.

It is therefore difficult to deny that there is an obvious need for an effective treatment, but the treatment has been at a standstill for many years. Only now something is about to happen. More and more, the disease has been associated with the extremely widespread lack of vitamin D. Vitamin D has a normalizing and growth-inhibiting effect in many tissues.

Faith in vitamin D has now become so great that one of the world’s leading vitamin D researchers, Professor David Feldman from Stanford University, has launched a clinical study. It targets men with prostate cancer who have relapsed during usual treatment.

Feldman will give them a combination of active vitamin D (calcitriol, see below) and regular arthritis pills (ibumetin or naproxen), both in moderate doses. To avoid side effects of calcitriol, it is given only once a week, but the exact dose is not stated.

Several years of laboratory studies have preceded this. Here, it has recently been shown that calcitriol reduces the growth of prostate cancer by 25%. The same result is obtained by treatment with traditional anti-rheumatic drugs (NSAID preparations, e.g. ibumetin and naproxen).

But most convincingly, when vitamin D and anti-rheumatic drugs are combined, growth slows down by as much as 70%, even if you are content with tolerable doses of each. Both agents counteract the formation of the so-called prostaglandins, which cause the cancer cells to grow and – in another context – cause arthritic pain, etc. If they are combined, the effect is enhanced.

This, as well as the announcement of the new trial, can be seen in, among other things, of a new press release from Stanford University. If the trial fulfills expectations, it will not only have enormous significance for the treatment. It will also be a sleight-of-hand tip for healthy men to get more vitamin D – perhaps a lot more – so they can make enough calcitriol themselves (calcitriol is only available by prescription).

Feldman is not just anyone when it comes to vitamin D. Together with two others, he is behind the book “Vitamin D” (Academic Press), which is a standard work for researchers with 1,800 pages. The newly revised edition costs DKK 3,445, so it is unlikely to be a bestseller. Feldman has been researching vitamin D for many years and has more than 200 scientific articles behind him.

Vitamin D is not a vitamin, but a hormone. It is formed in the skin by sun exposure, but must be converted in the liver and kidneys to become the active calcitriol. It is by now accepted by everyone that the elderly in particular cannot possibly get enough vitamin D if they do not receive supplements or eat plenty of oily fish. This is because, with age, the skin largely loses the ability to form the vitamin. In the dark half-year, the sun is also so low in the sky (in our northern latitudes) that neither young nor old form anything of importance, whether they get sun or not.

There are less than five micrograms of vitamin D in a typical Danish daily diet, but officially it is now recommended that adults get twice as much, nursing home residents four times as much. It is not difficult to find researchers who believe that this too is too little. The upper limit of risk-free intake is estimated at 50 micrograms per day.

By: Vitality Council

Reference:
Moreno J, Krishnan AV, Feldman D. Molecular mechanisms mediating the anti-proliferative effects of Vitamin D in prostate cancer. J Steroid Biochem Mol Biol. 2004 Nov;92(4):317-25

Green Diet And Antioxidants Act Against Prostate Cancer

August 16, 2005

A radically changed lifestyle together with antioxidant supplementation seems to stop the growth of early prostate cancer, while the blood becomes eight times more capable of fighting cancer cells.

Some studies with humans and numerous animal trials and population surveys have indicated that antioxidants counteract cancer. Nevertheless, only a few researchers have examined whether they help against cancer in humans when the disease is a reality. An American trial now shows that this may be the case, at least by cancer in the prostate.

The trial, which has just been published, included 93 men with early-stage prostate cancer. They were selected because they had refused to accept usual cancer treatment.

44 of them were instructed to follow a fairly strict diet where only 10% of calories were allowed to come from fat. They had to have a pure plant diet and avoid dairy products, but in return received a protein supplement in the form of a soy drink. In addition, they had to exercise equivalent to half an hour of brisk walking a day and had to perform various yoga exercises and meditate for another hour. Of course they weren’t allowed to smoke!

You’d think most people would quickly give up such a strict lifestyle. But the vast majority persist, perhaps because they are doing well. The leader of the trial, Dean Ornish, has described that when he let a group of men with bad hearts follow this recipe, their atherosclerosis in the coronary arteries of the heart decreased – mind you, not just in the first year, but quietly in a continuing process that all in all lasted at least five years.

In the current trial, however, Ornish supplemented with nutritional supplements:

  • Vitamin E 400 units/day.
  • Vitamin C: 2 grams/day.
  • Selenium: 200 micrograms/day.
  • Fish oil: 3 grams/day.

Better after a year
All had the so-called PSA value measured, first at the start of the experiment, and again after one year. PSA (Prostate-Specific Antigen) is an approximate expression of the spread of the cancer. That was the main purpose of the trial to measure what happened to PSA.

What happened was that when a year had passed, the PSA value had fallen by an average of 4% in the 44 in active treatment, while that in the control group – which was closely followed by their own doctor – had increased by 6%.

That in itself was an exciting result. But in addition, six men from the placebo group became so ill that they had to withdraw from the trial and undergo traditional treatment. If the six men from the control group had not dropped out – because they became very ill – the difference would have been even greater.

No actively treated patients left the trial
As a supplement to the PSA measurements, one more experiment was performed. They took serum from all participants and examined how it affected the growth of prostate cancer cells in laboratory experiments. After a year, a huge difference had emerged: the treated men’s serum inhibited the growth of cancer cells eight times as much as the control group’s!

These results are statistically very confident. One must therefore expect that there is an effect, but what causes it? Was it the predominantly green diet, soy, exercise – or perhaps yoga and meditation? Or was it the antioxidants?

One can only guess. Dean Ornish believes that overall lifestyle changes made the difference. But the assumption that antioxidants help against cancer is of course supported. In any case, the experiment is highly thought-provoking.

By: Vitality Council

References:
Ornish D et al. Intensive lifestyle changes may affect the progression of prostate cancer. The Journal of Urology 2005;174:1065-70.
Ornish D et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA 1998;280:2001-7.

Perhaps Prostate Cancer may be a Rarity in the Future

April 1, 2005

Every forth man lives with a highly increased risk of getting cancer of the prostate, the next most frequent cause to cancer deaths in men. It does not have to be like that. Exactly these exposed men could easily decrease their risk to a tenth.

Researchers from Harvard University in Boston have published a landmark study. It strongly suggests that most cases of cancer in the prostate are due to lack of balance in the body’s defense against free oxygen radicals. And most importantly: This balance can be restored with antioxidants – especially with selenium, but also vitamin E and the red dye of the tomatoes, lycopene. Prostate cancer can thus become a rare disease.

The imbalance occurs especially in men who get too little selenium and who, for hereditary reasons, have a particularly effective antioxidant enzyme (manganese-containing SOD) in their mitochondria. The mitochondria are the cells’ internal energy factories, which are worn down by free oxygen radicals with age. This wear and tear, parenthetically noted, is believed to be a very significant cause of aging and age-related diseases.

One would therefore think that it was an advantage to have a particularly effective antioxidant enzyme in one’s mitochondria. But very often it is not. The SOD enzyme transforms free oxygen radicals into the less risky hydrogen peroxide, but this creates a new problem: the hydrogen peroxide must also be removed, since it also causes harmful oxygenation. The removal requires an enzyme (glutathione peroxidase), the quantity of which depends on the supply of selenium.

The more free oxygen radicals (e.g. from smoking) that need to be neutralized and the more efficient the SOD enzyme is, the more harmful hydrogen peroxide accumulates and the greater the need for selenium.

Balance in things
The Harvard study is part of a study of approx. 15,000 American doctors who have been followed since 1982. Around 1990, 275 of them had developed serious prostate cancer, and it was those who were primarily found interesting.

By: Vitality Council

References:
1. Haojie Li et al. : Manganese superoxide dismutase polymorphism, prediagnostic antioxidant status, and risk of clinical significant prostate cancer. Cancer Res. 2005;65:2498-2504.
2. Woodson et al. Manganese superoxide dismutase (MnSOD) polymorphism, α-tocopherol supplementation and prostate cancer risk in the α-Tocopherol, β-Carotene Cancer Prevention Study. Cancer Causes Control 2003;14:513-8
3. Niels Hertz. Selen – et livsvigtigt spormineral. Forlaget Ny Videnskab 2002.

www.aacr.org/cncrrea.htm
www.ingentaconnect.com/content/klu/caco;jsessionid=2sf53q49osdn1.victoria
www.iom.dk