A stool with one leg

February 21, 2021

As previously quoted, they wrote in the Lancet (1) December 20th that in the future everything should be done to prevent and vaccinate and find methods for the treatment of Covid-19, and the Vitality Council can’t agree more that this stool should rest on three legs.

But the Danish government has not agreed to that. Since March 2020, it has focused on vaccines and only vaccines. – A one-legged stool.

Not only has the Government and the state media focused unilaterally on vaccines, but they have also actively censored information on both prevention and treatment. The government media has also been obediently accompanied by microphone holders from the major social and print media. It has been irrelevant to the censorship whether this information was sufficiently well documented.

Prevention

In the previous many newsletters, the Vitality Council has primarily advised on prevention in terms of keeping the immune system intact.

In our modern way of life with easy and fast industrial food of poor quality, improper preparation and overeating of carbohydrates, there is a great risk that our immune system will run out of essential nutrients. I have reviewed this topic again and again and will not bore you with this at this time.

But I will try to give a simple model for understanding the functioning of the immune system. This is because it is absolutely essential in prevention against Covid-19 and all sorts of other infections.

The immune system has a myriad of different cells to work with, and it’s pretty complicated, but let’s try a Pixie model; -a mousetrap:
There are two main systems, a so-called “innate” (non-specific) immune system, which works all the time, and an “adaptive” (specialized) immune system, which is adjusted by infection. The innate system attacks just about everything when, for example, a virus penetrates the body, but first the adaptive needs to get familiar with the new virus, adjust and activate the so-called T cells for attack, and teach the memory cells to remember for the next time how these virus are best attacked (antibodies).

Back to the mousetrap.

In the loft with all the mice (virus in the environment) we put a box (the body), with a small hole in the side (the innate immune system), and inside the box we put a couple of mousetraps (the adaptive immune system).

If we lack proper nutrition, vitamin D, selenium, vitamin C and magnesium, then the hole in the box is very large (the innate immune system fails). Then many mice can enter the box at once, and the traps (the adaptive immune system) do not have the capacity to snatch many mice. – Especially not if there is a lack of vitamin D, which is necessary to activate the T cells (2).

If, on the other hand, we get enough of the above nutrients, then we only have a small hole in the box (a good innate immune system), and then only a few mice enter the box (the body) at a time, and the adaptive immune system (the traps) can snatch them one by one.
Remember the Danish Minister of Health showing a graph with red and green curves some time ago.
If too many come too fast, then the hospital system would collapse.
The same way with our immune system.

If it is intact, the innate immune system will make sure to moderate the load so that the adaptive defense can have time to get to know the enemy and calibrate its cannons accordingly. Hereby we avoid the overload that results in the so-called cytokine storm, which is the start of all the accidents.

That is why it is so important to provide proper nutrition and supplement with vitamin D, vitamin C, selenium and magnesium.
And remember in the dark winter: Vitamin D in the blood should rise to 30-50 ng/ml (75-125 nmol /L.)
If you can’t get the blood sample taken locally, there are several excellent options for home testing i Denmark (3,4).

Treatment

Often you see pseudo-science, where vitamins and minerals are used as treatment after disease outbreaks, and even often in relatively small doses. It is pointless and only suitable to show that it does not work. These nutrients are for prevention.
An exception, however, is Vitamin C in high doses given intravenously under medical supervision.

There is only scant evidence here at the Covid-19 pandemic (5), but previously there is ample evidence of an effect on viral infections, as mentioned in the newsletter May 20th 2020.

There have been numerous experiments with hydroxychloroquine, which, however, have yielded quite varying results, and research into it is unfortunately largely discontinued.

Ivermectin is a remedy against scabies and certain parasites, and reportedly also has an effect on Covid-19 (6). The Indian health authorities have approved a treatment with Ivermectin, Doxycycline and zinc.
Ivermectin costs about 100 times as much as hydroxychloroquine, so it will probably never be the big success.
One week ago, Israeli researchers published (7) a preliminary result of treatment with inhalation of CD24 exosomes in 30 hospitalized moderately to severely ill Covid-19 patients. The 29 recovered in 3-5 days, the last one also recovered, but after more than 5 days. It should be a cheap method without side effects, so it sounds promising. CD24 exosomes are proteins that, like vitamin D, control T cell activation and can attenuate the cytokine storm.
We are anxiously awaiting news from the Israeli researchers.

What now?

After all, health authorities and the government are on thin ice right now, unless they manage to be saved by the globally declining infection rates and death rates.
You vaccinate and vaccinate, but to no avail on the closure of the society. The function of the vaccine is primarily to alleviate the disease in the vaccinated person.
Even though we have been vaccinated, we can still be infected and pass it on to others, because the virus is still there. Therefore, even the vaccinated must continue with face masks, despite the poor evidence of the effect of the hated face masks.
On top of this, there are still new mutations. Currently the English with increased infection of children, which we see in Kolding these days, but on the horizon lurks the South African and two different Brazilian varieties, which are even less sensitive to the antibodies we have received from previous infection and from vaccination.
Well, then the vaccine just has to be adjusted, and then the population just has to be vaccinated again.
Okay. -How many times? So far, in 2 months we have only vaccinated 3% of the population. So good luck with the task if it all has to start all over again.
It seems like a Sisyphean task if the Government will continue to focus only on the one-legged stool.
As a solution to this chaos, the Government is now proposing a wild testing strategy, where we will be tested twice a week next year. This will cost just as much as the overall healthcare system, and one does not have to be a nuclear physicist to figure out that this will massively affect all other diagnoses in the healthcare system.
And the virus will not disappear either due to this.
It’s a bit like setting up photo traps to detect an army of soldiers invading the country. No defense, just registration while the invasion rumbles towards the defenseless population.
When the hopelessness of this strategy eventually dawns on the Government, there is hope that the one-legged stool will be given two more legs, namely prevention and treatment.
Then every single person can be informed about the possibility of defending themselves against Covid-19.
Only then will the disease become so mild that it resembles a common flu, by which we can drop the hated face masks and the lockdown of society.

May we ask for the three-stringed strategy as soon as possible thank you.

A stool with one leg is doomed to tip over.
A stool with three legs does not tip over.
No matter how uneven the surface is, it will not even tilt.

Take care of yourself and others.

Claus Hancke MD
Specialist in general medicine

References

  1. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Piroth L et al, Dec.2020, Lancet. https://www.sciencedirect.com/science/article/pii/S2213260020305270
  2. Geisler C, Ødum N et al. 2010, Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nature Immunology 2010;11:344-349.
    https://www.nature.com/articles/ni.1851
  3. https://www.webapoteket.dk/saar-og-sygepleje/selvtest/quicktest-d-vitamin-p-222465
  4. https://www.cerascreen.dk/products/test-for-d-vitamin
  5. Alberto Boretti, Bimal Krishna Banik (2020) Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome PharmaNutrition. 2020 Jun;12:100190.  Published online 2020 Apr 21. https://www.sciencedirect.com/science/article/abs/pii/S2213434420300153
  6. Caly L et al, 2020, Antiviral Research, 178, june 2020, 104787.
    https://www.sciencedirect.com/science/article/pii/S0166354220302011?via%3Dihub
  7. https://clinicaltrials.gov/ct2/show/NCT04747574

Neglected opportunities

January 15, 2021

“The world is groping blindly for defences against the new virus variants” – according to a headline in the Danish newspaper Berlingske January 12th. The article then deals with gene sequencing and rapid diagnostics for infection control. But it is clear that panic spreads every time a new variant appears.

The fumbling in the dark began with clusters 1-5 found in Danish mink, which led to politician panic and the most drastic coercive intervention so far against any business in Denmark and the total closure of the region Vendsyssel.

The next time the panic screw was increased is now that the English variant B 1.1.7 is spreading. It is not more dangerous, but more contagious.

When the panic and anxiety from this variant begin to subside, then it’s time to introduce the South African variant and gravely tell us that this variant can now hit children, and then shut the country down. It is so deeply predictable that we absolutely must be pressed down into a state of chronic anxiety so that we conform to what is expected, and all of us line up for vaccination.

However, it is a good thing that the vaccines have arrived. The first vaccine was received by the media and politicians like a Messiah, and it was very nearly close to rose petals being sprinkled on the road in front of the trucks.

It is excellent that the health authorities quickly have launched vaccinating the elderly and seriously ill at risk. So far so good.

But my goodness, how they could have done so much good in the 10 months that have passed if they had listened to science.

When you consider that in order to shop in the supermarket Netto you have to look like a bank robber and wear a face mask whose effect is extremely poorly documented; -then it is striking that for months the authorities have turned a blind eye to well-documented opportunities that could have saved many lives and much suffering.

A study recently published in the Lancet (1) reviewed 89,000 hospitalizations with Covid-19 in March-April 2020 and Influenza Dec-Jan 2017-18.

It was found that Covid-19 caused significantly longer length of stay and greater mortality than the flu and it was concluded that in the future every effort should be made to prevent and vaccinate as well as find methods for treating Covid-19.

The Vital Council can only agree on this 3-string strategy: prevent, vaccinate, find ways to treat.

Unfortunately, this is not the strategy the government has chosen. Instead, they have chosen to put all their eggs in one basket.
Ever since the start of the pandemic, there has been hope and talk about the upcoming vaccine.
The authorities have been going all in, bone-hard, on the vaccine and only the vaccine and have not even wanted to squint at the other options in the three-stringed strategy mentioned above.

You can therefore understand the panic of the politicians until they were reassured that the mink variant was probably also sensitive to the upcoming vaccine. The same has now happened with B 1.1.7 from England, while we are still unsure of the South African variant.
That is to say the vaccines may in the future have difficulty keeping up with the constant changes in the highly mutated RNA virus, and one day they will fall short.

Yet all measures other than vaccines have been swept off the table despite massive documentation.
It is as if the authorities have overlooked that we humans actually have an immune system that is itself capable of adapting a new virus mutant.
Unlike a vaccine, a well-functioning immune system will be able to keep up every time a virus mutates.

Of course, it is necessary for the immune system to function optimally, and it ris necessary that we humans get a diet with the nutrients that the immune system needs.

This is so obvious that it hurts to say over and over again (see 5 previous newsletters from May 2020):
Decades of scientific evidence show that deficiency of especially vitamins A, C, D and K as well as deficiency of selenium, magnesium and zinc weakens the immune response and increases the incidence of infections, especially lung diseases. (2-10)

Specifically, in recent years there has been extensive writing about vitamin D, and the University of Copenhagen wrote almost prophetically on March 7, 2020, on its website in the News section: “Vitamin D is absolutely crucial for the immune system.”

Since then, several studies have been performed on vitamin D against Covid-19, which show significantly less infectivity, shorter hospital stays, milder illness, and lower mortality. (11-17) This documentation is further strengthened by the fact that the groups that are low in Vitamin D are those most affected by Covid-19, especially overweight persons, nursing home residents, immigrants, the chronically ill, and the elderly.

Traditionally, here in Denmark we have considered it sufficient, as long as the serum vitamin D (25-hydroxyvitamin D) level was 50 nmol/L (20 ng/ml) or more. This is not enough. All studies point to the need to have at least 75 nmol/L (30 ng/ml) in the blood and preferably 150 nmol/L (60 ng/ml.)
Far less than half of the Danish population are within these figures.
You cannot reach this preferred level, even if you then eat fatty fish every single day; you have to take supplements.
In turn, there is a major health benefit in eliminating the population’s deficiency of vitamin D. -Not only in the face of several of the major lifestyle diseases, but also of Covid-19.

Research shows, as mentioned, that sufficient vitamin D will shorten the duration of the disease, avoid hospitalizations, and reduce mortality from covid-19 disease. Those who become ill will simply have a mild course of the disease but will still build up immunological defenses until the next time they encounter it. If you also make sure that there is no shortage of the other above-mentioned vitamins and minerals, then the disease picture will look completely different in this country, and it could put a damper on the all-consuming anxiety and worry in the population.

Note: There is no talk of these vitamins and minerals being used to “treat” anything. They are used to correct deficiencies.

But it requires the authorities to think outside the box and show openness to the well-documented possibilities that exist here. Especially when these options are safe.
It is fine to think of collective infection control, but it does not preclude that one also thinks of the individual’s immune system and its well-being.

There has been an unfortunate streak of overlooked possibilities throughout the 10-month-long corona course. Opportunities that could have saved many lives and saved many sufferings.
-And these are, mind you, options that are significantly better documented than face masks.

Take care of yourself and others.

Claus Hancke MD
Specialist in general medicine

References

1. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Piroth L et al, Dec.2020, Lancet. https://doi.org/10.1016/S2213-2600(20)30527-0

2. Arvinte C, Singh M, Marik PE (2020) Serum Levels of Vitamin C and Vitamin D in a Cohort of Critically Ill COVID-19 Patients of a North American Community Hospital Intensive Care Unit in May 2020: A Pilot Study. Med Drug Discov. 8:100064. https://pubmed.ncbi.nlm.nih.gov/32964205

3. Hewison M. Vitamin D and innate and adaptive immunity. Vitam Horm, 2011; vol 86:23-62.

4. Gombart AF, Pierre A, Maggini S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020 Jan 16;12(1).

5. Schwalfenberg GK. A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Mol Nutr Food Res. 2011 Jan;55(1):96-108.

6. Dancer RC, Parekh D, Lax S, D’Souza V, Zheng S1, Bassford CR, et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax. 2015 Jul;70(7):617-24.

7. Urashima M, Segawa T, Okazaki M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren. Am J Clin Nutr. 2010 May;91(5):1255-60.

8. Sabetta JR, DePetrillo P, Cipriani RJ, Smardin J, Burns LA, Landry ML. Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adults. PLoS One. 2010 Jun 14;5(6):e11088.

9. Uwitonze AM, Razzaque MS. Role of Magnesium in Vitamin D Activation and Function. J Am Osteopath Assoc. 2018 Mar 1;118(3):181-189.

10. Dofferhoff A et al, Reduced Vitamin K Status as a Potentially Modifiable Risk Factor of Severe Coronavirus Disease 2019, Clin Infect Diseases, 2021, https://doi.org/10.1093/cid/ciaa1258

11. Kohlmeier M. Avoidance of vitamin D deficiency to slow the COVID-19 pandemic. BMJ Nutrition, Prevention & Health. 2020;3.

12. Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020; 12(4):988.

13. McCartney DM, Byrne DG. Optimisation of Vitamin D Status for Enhanced Immuno-protection Against Covid-19. Ir Med J. 2020 Apr 3;113(4):58.

14. Aldridge RA, Lewer D, Beale S, et al. Seasonality and immunity to laboratory-confirmed seasonal coronaviruses (HCoV-NL63, HCoV-0C43, and HCoV-229E): results from the Flu Watch cohort study 30 March 2020.

15. Ilie PC, Stefanescu S, Smith L. The role of Vitamin D in the prevention of coronavirus disease 2019, infection and mortality. Aging Clinical and Experimental research (https://doi.org/10.1007/s40520-020-01570-8) Springer Switzerland. 2020 May 6.

16. McCullough PJ, Lehrer DS, Amend J. Daily oral dosing of vitamin D3 using 5000 TO 50,000 international units a day in long-term hospitalized patients: Insights from a seven year experience. J Steroid Biochem Mol Biol. 2019 May;189:228-239.

17. Kaufman H et al, SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels PLOS ONE, sept.17,2020

Update on Corona virus

August 26, 2020

Since the last newsletter from May 28, things have gone well here in Denmark.
On the other hand, viruses have become widespread, especially in those countries that have not taken the spreading of infection seriously.
In the past month, however, localized infection clusters have emerged in various places here in Denmark as well, especially in immigrant communities.
The reasons for this have been mentioned in the previous newsletters, whose advice is still valid, so I will not repeat it here, but instead focus on what has happened in the last 3 months.

Studies
In a literature study(1) from Norwegian, Russian and Swedish public health institutes six researchers have concluded that early intervention with Zinc, Selenium and Vitamin-D can alleviate the course of the disease, and virtually prevent the cytokine storm, which is the process responsible for the destruction of tissues, microthromboses, inflammation, etc. -the whole cascade that can take the life of the Covid-19 sick persons.

An almost simultaneous study(2) from Germany analyzed Serum-Selenium and Serum-Selenoprotein P, and both values were significantly lower in those who did not survive Covid-19.
(Selenium: 53.3 ± 16.2 vs. 40.8 ± 8.1 μg / l, Selenoprotein-P: 3.3 ± 1.3 vs. 2.1 ± 0.9 mg / L p<0.001). These results must be said to be highly relevant in our country, where we consume so little selenium. This study falls nicely in line with the former study.

On August 3, an article was published in the Lancet(3) which strongly calls for increased intake of vitamin D based on solid literature reviews.
This also falls in line with the first study mentioned above.

And, finally, there is a meta-analysis(4) of the role of vitamin D in the development of acute respiratory infection. It includes 30,000 people in controlled trials (RCTs), and has shown significantly reduced risk of acute respiratory infection already at 10-25 µg of vitamin D daily.
This confirms a previous meta-analysis(5), which also found a significant inverse correlation between the risk of acute respiratory infection and the vitamin D content in the blood.
All of the above studies are nicely in line with the advice mentioned in the five newsletters from May.

Authorities distribute vitamins
Azerbaijan has registered 35,000 Covid-19 cases in a population of 10 million. Of these, 1,800 were hospitalized and 508 died.
Here, the Ministry of Health has provided more than 3,500 Covid-19 patients with a free “medicine package” containing: Vitamin C, Vitamin D, Magnesium, Selenium, Zinc and Paracetamol.
The idea is then that the patients stay at home and treat themselves there.
Every day they are then contacted by the local hospital clinic and have to answer a series of questions, just as the doctor checks that they are taking their pills.
So far, a significant reduction in the number of hospitalizations in this group has been observed(6).

You can only shout cheers when you see authorities who can think outside the box and dare to start such a project. My guess is that the trend will continue and that home treatment will continue to reduce hospital admissions in Azerbaijan.

The idea is not bad because you initiate a completely harmless treatment of a, for some people, -dangerous disease.
But why wait until they get sick?

With timely care, one can improve the immune system of the entire population if one simply provides information about these supplements and their significance.

What could be done here in Denmark is to provide subsidies to the vulnerable groups, especially residents of the country’s nursing homes, who are completely dependent on the public perception of vitamins and minerals. If their own doctor does not prescribe a vitamin supplement, then residents are often denied help to get the supplements, despite their own desire. They are completely dependent upon the doctor’s knowledge or lack thereof. I think Danish authorities and medical staff would be shocked if we measured the level of vitamin D in the country’s nursing home residents.
If you do not want to use public funds to donate these subsidies to the residents, then you can at least make sure that both residents and their relatives are informed.

These newsletters on Covid-19 are unfortunately necessary as this knowledge and the scientific back-up are neglected in the public advice to the Danish population.

Take care of yourself and others

Claus Hancke MD
Specialist in general medicine

References

  1. Alexander J, Alehagen U et al. (2020) Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Nutrients 2020, 12, 2358.
  2. Moghaddam A, Heller R et al. (2020) Selenium Deficiency Is Associated with Mortality Risk from COVID-19. Nutrients 2020, 12, 2098.
  3. Martineau A, Forouhi N (2020) Vitamin-D for Covid-19: a case to answer. Lancet 2020;8:735-6.
  4. Joliffe D, Martineau A, Damsgaard Camilla et al. (2020) Vitamin D supplementation to prevent acute respiratory infections: Systematic review and meta-analysis of aggregate data from randomised controlled trials. medRxiv BMJ (endnu ikke peer reviewed) 17.juli 2020.
  5. Martineau A et al. (2017) Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data.
    BMJ 2017;356:i6585.
  6. lmahamad A, (2020) 3.500 covid-19 patients provided with free medication. Azernews 18.august 2020. https://www.azernews.az/healthcare/168099.html

Be prepared for the next Corona epidemic

The population is not

May 29, 2020

The Corona is spreading more slowly now, and, here in Denmark, Covid-19 is gradually infecting fewer and fewer people and we are more aware of protecting ourselves against it.

There have been good effects from keeping our distance and from maintaining good hygiene in which we have all been well instructed.

Much to the surprise of the Danish Serum Institute, less than 2% of the Danish population has had the disease, and only a few of these individuals may have obtained immunity to SARS-CoV-2, which the virus is called.
This means that more than 98% have not been infected and are completely without immunity. So forget about herd immunity.

The Danish population is just as vulnerable it was were in March when it all started.

Let’s try to summarize what we know and what we can do about it.

What do we know now?
SARS-CoV-2, which is the virus responsible for the current Covid-19 pandemic, is characterized in that it – like the influenza virus – triggers a reaction with the release of a number of signaling molecules such as interleukins, interferons, and lymphokines.

When this release is powerful, it is called a “cytokine storm”, and with Covid-19, it is so powerful that immune cells begin to damage the tissues where the process is taking place, and, in this case, it is primarily the lung tissue that is damaged.

During the cytokine storm, a violent inflammatory response and increased release of free oxygen radicals are created, which further damages the lung tissue due to the subsequent inflammatory microcoagulation seen in the pulmonary vessels. Adding too much oxygen at this stage will only aggravate the situation, which several anesthesiologists have experienced when Covid-19 patients’ conditions worsen when they are put on a respirator.

What can we do about it
Thus, it is primarily about attenuating the fatal cytokine storm.
Here vitamin D, magnesium, selenium, and vitamin C are particularly important as they specifically inhibit this cytokine storm and the subsequent inflammatory microcoagulation in the pulmonary vessels.
If the level of these essential substances in the body is high enough then you will have a subdued cytokine storm and thus attenuated symptoms, as seen during influenza infection. Fresh extract of Coneflower (Echinacea) has also been documented in several scientific studies to effectively inhibit this cytokine storm.

It should be obvious to protect ourselves by promoting such harmless and inexpensive remedies, but unfortunately in the medical and pharmaceutical world, one tends to stare blindly at the most expensive solutions.
Medical professionals were first intrigued by the antiviral drug Remdesivir, which could shorten the disease period of Covid-19 from 15 to 11 days. This fascination has now been replaced by a new one, another drug, an experimental cancer drug, Bemcentinib that may prevent viruses from entering the cells. A phase II trial is underway for 120 people, and we hope we will be able to get the result in a few months.

Well, it is excellent that medical professionals try to find a medicine that can help in this situation, but is it absolutely necessary to find a new, expensive medicine with side effects, when there are other far cheaper options without side effects?

The long awaited vaccine
While all this is going on, the pharmaceutical industry is working full speed on a vaccine. A vaccine against an RNA virus is very difficult to make, and using a vaccine is especially problematic because viruses constantly mutate and thereby often change the immune response.

No vaccine has ever been safety-tested, in the same way that medicine is tested, and this is a bit problematic because in recent years, the industry has started to add substances whose purpose is to stimulate the immune system for effective antibody formation. And stimulating antibody formation is good enough, too, but the safety of these substances has never been investigated. In Denmark, the use of mercury (thimerosal or thiomersal) in childhood vaccines was stopped from 1992 and in influenza vaccines from 2004, with the exception of the vaccine in 2009, which was an embarrassing exception. The toxic mercury should never be used again for human use – neither in the teeth, for that matter.

But in recent years aluminum has been added in the form of nanoparticles as well as squalene emulsions. These adjuvants have not been safety tested. It has just been noted (WHO has noted) that the number of side effects is not greater than is usually seen with vaccination. Aluminum is a neurotoxin, but it has been used in vaccines in the form of various aluminum salts since 1930, so in that form it probably isn’t particularly harmful. The problem is that nanoparticles are now being used that cannot be stopped by a cell membrane. They can penetrate all tissues.
It cannot be ruled out that it is safe to use these additives. It’s just never been investigated.

It should be a simple task to make a study with each of these ingredients against a real placebo such as brine.
We have many excellent vaccines, so let’s not be vaccine deniers. Let’s welcome a SARS-CoV-2 vaccine when it arrives, and then just hope it is properly safety tested. Of course, this hope becomes a requirement if we are to be mandatory vaccinated.

Of course, the Coronavirus will return
When and how bad we do not know, but it will come.
As mentioned in the Vitamin C newsletter, one of Europe’s experts in Covid-19, Professor Christian Drosten from the University of Berlin, has stated that the second wave could be tougher than the current one.
And since more than 98% of the Danish population is without immunity against it, we should not sit with our hands in our laps and wait for a vaccine.

We need to be proactive.
We need to make sure that we have enough of the nutrients that can reduce the risk of our getting sick, and especially the nutrients that can dampen the cytokine storms, so that we get a mild course of illness if we get sick anyway.

Especially old people and people who eat only very little, who may also be weakened by chronic disease, will do well by supplementing the diet in order to be well equipped with an optimally functioning immune system as the next virus threat approaches.

An appropriate daily dose for a normal-weight adult will typically be:

  • Vitamin A: 1-2 mg
  • Vitamin B6: 4-5 mg
  • Vitamin C: 2-3,000 mg
  • Vitamin D3: 75-100 µg
  • Selenium: 100-200 µg
  • Zinc: 20-30 mg
  • Magnesium: 200-300 mg

Note: The low dose is for those weighing less than 70 kg (155 pounds / 11 stones).

If you start now, you will be prepared in the fall. This is an obvious strategy for the country’s nursing homes.

This is the fifth and final Covid-19 newsletter.

Unfortunately, the five newsletters are necessary as this knowledge and scientific back-up are neglected in the public counseling of the population.

Take care of yourself and others,

Claus Hancke, MD,
Specialist in general medicine

Refs:

  • McGonagle D et al. (2020) Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet May 7, 2020:1-9
  • Zhang Y, Leung D, Richers B, et al. (2012) Vitamin D Inhibits Monocyte/Macrophage Proinflammatory Cytokine Production by Targeting MAPK Phosphatase-1. Journal of Immunology. 2012;188(5):2127-2135.
  • Alberto Boretti, Bimal Krishna Banik (2020) Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome PharmaNutrition.
    2020 Jun;12:100190. Published online 2020 Apr 21.
  • Sharma M, Anderson A et al.(2009) Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract. Antiviral Research, 2009;83(2):165-170.
  • Cannell JJ, Zasloff M, Garland CF et al. (2008) On the epidemiology of influenza.
    Virol J. 2008;5:29.
  • Gorton HC, Jarvis K (1999) The effectiveness of vitamin C in preventing and relieving the symptoms of virus-induced respiratory infections. J Manip Physiol Ther, 22:8, 530-533
  • Hemilä H (2003) Vitamin C and SARS coronavirus Journal of Antimicrobial Chemotherapy, Volume 52, Issue 6, December 2003, Pages 1049–1050
  • WHO Global advisory committee on vaccine safety 2020 (ikke ændret siden 2006). https://www.who.int/vaccine_safety/committee/topics/adjuvants/squalene/Jun_2006/en/

Zinc is important for the immune system

– also for Covid-19 disease

May 18 2020

In continuation of the previous two newsletters on Vitamin D and Selenium, a little important information about Zinc and its importance to the immune system is now presented here.

In these corona times, it is especially necessary that we each optimize our immune system so that we are well prepared for a possible new wave in about half a year from now, when people’s deposits of vitamin D again are declining.

In the Western part of the world, about 25% of the population has some level of zinc deficiency, especially the elderly, people with high alcohol consumption, people with chronic infections, those who get certain types of medicine, and elite athletes, who use up their magnesium and zinc.

Zinc is part of more than 200 different enzyme systems and is a prerequisite for normal growth and cell formation and a well-functioning immune system.

There is solid evidence that zinc deficiency leads to increased susceptibility to infection. Since zinc supplementation has also been found to reduce the duration of a cold, various zinc lozenges have been tried, and a Cochrane study of 18 studies found that 75 mg of zinc a day could reduce the duration of cold symptoms in healthy people, provided the zinc tablets were given within the first 24 hours after symptom onset.

The effect lies, among other things, in the skin and mucous membranes, where zinc is necessary for the cell replication that the body initiates when an infection is to be fought. This is especially true regarding the growth, maturation and differentiation of circulating lymphocytes, T cells and the killer cells, NK cells that we need to fight viruses.

In 2010, an in vitro study showed that zinc inhibits another coronavirus, namely SARS-CoV, which caused an epidemic in 2002. Zinc has a direct antiviral effect by inhibiting SARS-CoV RNA polymerase, which is a prerequisite for virus replication.

There is no specific study yet on the effect of zinc on the current CoV-Sars-2, but natural connections are looked for and, for example, the current Covid-19 disease is characterized by many people’s losing the sense of taste and smell, which is also seen in the case of zinc deficiency.
But it could be coincidence.

We have to take zinc all the time, as it is not stored specifically. It is not difficult to get enough zinc here in Denmark, just by eating real food and not industrial synthetic ‘plastic’ food. Zinc is found in meat, seafood, organ meat, fish, eggs, legumes, cereals, dairy products, green vegetables, fruits and berries. An intake of 20-30 mg per day is enough.

If you take zinc as a supplement, remember that it can reduce the copper content of the body, as zinc will upregulate the metallothionein synthesis, which can cause copper loss. This is probably not of great importance here in Denmark, where a large pig production has given us all a solid copper supplement.

In any case, we need zinc to optimize our immune system, so we are ready to fight an virus infection.

Now you have read about vitamin D, selenium and zinc in relation to the immune system.
The next newsletter to arm your immune system against Covid-19 will be about Vitamin C.

Take care of yourself and others,

Claus Hancke, MD,
Specialist in general medicine

Refs:

  • Read Scott A, Obeid S et al. The role of Zinc in antiviral immunity.(2019) Adv Nutr 2019;10:696–710
  • Skalny et al: Zinc and respiratory tract infections: Perspectives for Covid-19. Int J Molecular Med. April 13, 2020
  • Mossad S, Macknin M, Mendendorp S, et al. Zinc Gluconate Lozenges for Treating the Common Cold: A Randomized, Double-Blind, Placebo-Controlled Study. Annals of Internal Medicine 15 July 1996
  • Velthuis AJW, van den Worm SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ (2010). Zn2+ Inhibits Coronavirus and Arterivirus RNA Polymerase Activity In Vitro and Zinc Ionophores Block the Replication of These Viruses in Cell Culture. PLoS Pathog 6(11): e1001176.
  • Shankar AH, Prasad AS. Zinc and immune function: The biological basis of altered resistance to infection. Am J Clin Nutr. 1998 Aug;68 (2 Suppl): 447S-463S. doi: 10.1093/ajcn/68.2.447S.
  • Singh M, Das RR. Zinc for the common cold. Cochrane Database of Systematic Reviews 2013, Issue 6. Art. No.: CD001364. DOI: 10.1002/14651858.CD001364.pub4
  • Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 2007;7(6):454–65.

Zinc, Research references

January 1999

1. Aamodt RL, Rumble WF, Johnston GS et al. Absorption of orally administrated 65Zn (zinc) by normal human subjects. Am J Clin Nutr 1981; 34: 2648-2652.
2. Bales CW, Freeland-Graves JH, Askey S et al. Zinc, magnesium, copper, and protein concentrations in human saliva. Age- and sex-related differences. Am J Clin Nutr 1990, 51: 462-469.
3. Balogh Z et al. Plasma Zinc and its relationship to clinical symptoms and drug treatment in rheumatoid arthritis. Ann Rheum Dis 39(4): 329-32, 1980.
4. Berg JM, Shi Y. The galvanization of biology. A growing appreciation for the roles of zinc. Science 1996; 271: 1081-1085.
5. Brody I. Topical treatment of recurrent herpes simplex and post-herpetic erythema multiforme with low concentrations of zinc sulphate solution. Br J Dermatol 104; (2):191-4, 1981.
6. Caselli M, Bicocchi R. Taux serique du zinc chez les malades atteints du syndrome d’immunodeficit acquis. Presse Med 37:1877-8, 1986 (in French).
7. Cunnigham-Rundles S, Cunningham-Rundles WF. Nutrition and immunology. New York: Alan R. Liss. 1988: p 197-214.
8. Cousins RJ, Hempe JM. Zinc. In: Present knowledge in nutrition. 6th edn. Washington, DC: Nutrition Foundation. 1990: p 251-260.
9. Cousins RJ. Zinc. In: Present knowledge in nutrition. 7th edn. Washington, DC: Nutrition Foundation. p 293-306, 1996.
10. Crofton RW et al. Zinc metabolism in celiac disease. Am J Clin Nutr 52; (2):379-82, 1990.
11. DeBartolo HM Jr. Zinc and diet for tinnitus. Am J Otol 10; 3: 256, 1989.
12. De Gordon AM. Effects of adjuvant therapy with zinc in human immunodeficiency infection. Abstract. J Am Coll Nutr 11; (5):601, 1992.
13. De Gordon AM. Evaluation of tissue zinc status through cell-mediated immune response in HIV disease. Abstract. J Am Coll Nutr 11; (5):602, 1992.
14. Eby GA. Use of topical zinc to prevent recurrent herpes simplex infection: Review of literature and suggested protocols. Med Hypotheses 17:157-65, 1985.
15. Eby GA. Linearity in dose-response from zinc lozenges in treatment of common colds. J Pharmacy Technol 11:110-22, 1995.
16. Engel ED et al. Diabetes melitus: Impaired Wound Healing from Zinc Deficiency. J Am Pod Assoc 71: 536-44, 1981.
17. Finnerty EF. Topical zincin the treatment of herpes simplex. Cutis 37; (2):130-1, 1986.
18. Fitzherbert J. Genital herpes and zinc. Med J Aust 1:399, 1979.
19. Gersdorff M et al. The zinc sulfate overload test in patients suffering from tinnitus associated with low serum zinc. Preliminary report. Acta Otorhinolaryngol Belg 41; 3: 498-505, 1987.
20. Gersdorff M et al. A clinical correlation between hypozincemia and tinnitus. Arch Otorhinolaryngol 244; 3:190-3, 1987.
21. Gibson RS, Anderson BM, Scythes CA. Regional differences in hair zinc concentrations. A possible effect of water hardness. Am J Clin Nutr 1983; 37: 37-42.
22. Godfrey JC, Sloane B, Smith D. Zinc gluconate and the common cold: a controlled clinical study. J Int Med Res 20; 3:234-46, 1992.
23. Gordon YJ et al. Irreversible inhibition of herpes simplex virus replication in BSC-1 cells by zinc ions. Antimicrob Agents Chemother 8; (3):377-80, 1975.
24. Grennan DM et al. Serum copper and zinc in rheumatoid arthritis and osteoarthritis. N Z Med J 91; 652: 47-50, 1980.
25. Hambidge KM. Zinc deficiency in young children. Am J Clin Nutr 1997; 65: 160-161.
26. Haring BSA, Van Delft W. Changes in the mineral composition of food as a result of cooking in ‘hard’ and ‘soft’ waters. Arch Environ Health 1981; 36: 33-35.
27. Hegazi SM et al. Effect of Zinc Supplementation on Serum Glucose, Insulin, Glucagon, Glucose-6-Phosphatase and Mineral Levels in Diabetics. J Clin Biochem Nutr 12: 209-15, 1992.
28. Honkanen VEA et al. Plasma zinc and copper concentrations in rheumatoid arthritis: Influence of dietary factors and disease activity. Am J Clin Nutr 54: 1082-6, 1991.
29. Huber AM, Gershoff SN. Effects of zinc deficiency on the oxidation of retinol and ethanol in rats. J Nutr 10:11:1486-90, 1975.
30. King JC, Hambidge KM, Westcott JL et al. Daily variation in plasma zinc concentrations in women fed meals at six-hour intervals. J Nutr 1994; 124: 508-516.
31. King JC. Does poor zinc nutriture retard skeletal growth and mineralization in adolescents? Am J Clin Nutr 1996; 64: 375-376.
32. Kondo T, Toda Y, Matsui H. Effects of exercise and sleep deprivation on serum zinc. J Trace Elem Exp Med 1990; 3: 324-354, 1990.
33. Koyama H, Hosokai H, Tamura S et al. Positive association between serum zinc and apolipoprotein A-II concentrations in middle-aged males who regularly consume alcohol. Am J Clin Nutr 57: 657-661, 1993.
34. Krebs NF, Reidinger CJ, Hartley S et al. Zinc supplementation during lactation. Effects on maternal status and milk zinc concentrations. Am J Clin Nutr 61: 1030-1036, 1995.
35. Krotkiewski M et al. Zinc and muscle strength and endurance. Acta Physiol Scand 116; 3: 309-11, 1982.
36. Mahajan S, Prasad A, Brewer G et al. Effect of changes in dietary zinc intake on taste acuity and dark adaptation in normal human subjects. J Trace Elem Exp Med 5: 33-45, 1992.
37. Mares-Perlman JA et al. Association of zinc and antioxidant nutrients with age-related maculopathy. Arch Ophthalmol 114:991-7, 1996.
38. Masters DG, Keen CL, Lonnerdal B, Hurley LS. Zinc deficiency teratogenicity. The protective role of maternal tissue catabolism. J Nutr 113: 905-912, 1983.
39. Mattingly PC et al. Zinc Sulphate in Rheumatoid Arthritis. Ann Rheuma Dis 41: 456-7, 1982.
40. Meadows NJ, Ruse W, Smith MF et al. Zinc and small babies. Lancet 2: 1135-1137, 1981.
41. Menkes C-J et al. Traitement de la polyarthrite rheumatoide par le sulfate de zinc par os. Presse Med 7: 760, 1978 (French).
42. Mobarhan S et al. Dietary zinc deficiency produces electroretinogram ERG abnormalities without depleting total ocular zinc. Fed Proc 43:685, 1984.
43. Mocchegiani E, Veccia S, Ancarani F, et al. Benefit of Oral Zinc supplementation (as an adjunct to Zidovudine (AZT)) Therapy against Opportunistic Infections in AIDS. Int J Immunopharmacol 17; (9):719-27, 1995.
44. Moser-Veillon PB, Reynolds RD. A longitudinal study of pyridoxine and zinc supplementation of lactating women. Am Clin Nutr 52: 135-141, 1990.
45. Mossad SB, Macknin ML, Medendorp SV et al. Zinc gluconate lozenges for treating the common cold. A randomized, placebo controlled study. Ann Intern Med 125: 81-88, 1996.
46. Mussalo-Rauhamaa H et al. Predictive clinical and laboratory parameters for serum zinc and copper in rheumatoid arthritis. Ann Rheum Dis 47; 10: 816-19, 1988.
47. Naveh Y et al. Zinc metabolism in rheumatoid arthritis: plasma and urinary zinc and relationship to disease activity. J Rheumatol 24; 4: 643-6, 1997.
48. Newsome DA, Swartz M, Leone NC, et al. Oral zinc in macular degeneration. Arch Ophthalmol 106:2:192-8, 1988.
49. Newsome DA et al. Zinc content of human retinal pigment epithelium decreases with age and macular degeneration, but superoxide dismutase activity increases. J Trace Elem Exp Med 8:193-9, 1995.
50. Nishi Y. Anemia and zinc deficiency in the athlete. J Am Col Nutr 15: 323-324, 1996.
51. Pandley SP et al. Zinc in rheumatoid arthritis. Indian J Med Res 81: 618-20, 1985.
52. Peretz A, Nève J, Jeghers O, Pelen F. Zinc distribution in blood components, inflammatory status, and clinical indexes of disease activity during zinc supplementation in inflammatory rheumatic diseases. Am J Clin Nutr 57: 690-4, 1993.
53. Posacki C, et al. Plasma, Copper, Zinc, and Magnesium Levels in Patients with Premenstrual Tension Syndrome, Acta syndrome : Obstet Gynecol Scand 73; 452-5, 1994.
54. Prasad ASP. Clinical biochemical and nutritional spectrum of zinc deficiency in human subjects: An update. Nutr Rev 41: 197-208, 1983.
55. Rangnekar GV, Gamur MS. Serum and urinary zinc levels in urolithiasis. Br J Urology 71:527-9, 1993.
56. Reunanen A, Knekt P, Marniemi J et al Serum calcium, magnesium, copper and zinc and risk of cardiovascular death. Eur J Clin Nutr 50: 431 – 437, .
57. Shambaugh GE Jr. Zinc for tinnitus, imbalance, and hearing loss in the elderly. Am J Otol 7; 6:476-7, 1986.
58. Simmer K, Thompson RP. Maternal zinc and intrauterine growth retardation. Clin Sci 68: 395-399, 1985.
59. Singal PK, Dhillon KS, Beamish RE, et al. Protective action of zinc against catecholamine-induced myocardial changes. Electrocardiographic and ultrastructural studies. Lab Invest 44:426, 1981.
60. Soltan MH, Jenkins DM. Maternal and fetal plasma zinc concentration and fetal abnormality. Br J Obstet Gynaecol 89: 56, 1982.
61. Sandstead HH. WO Atwater memorial lecture. Zinc. Essentially for brain dcvelopment and function. Nutr Rev 1985; 43: 129-137, 1985.
62. Schauss AG, Bryce-Smith D. Nutrients and brain function. Basil: Karger. p 151-162, 1987.
63. Shah DR et al. Effect of oral zinc sulphate on serum lipids and lipoproteins in human subjects. Indian J Physiol Pharmacol 32;1:47-50, 1988.
64. Shambaugh GE Jr – interviewed in Anonymous. Hearing loss may be linked to zinc deficiency. Geriatrics 38; 4:21, 1983.
65. Shambaugh GE Jr. Zinc for tinnitus, imbalance, and hearing loss in the elderly. Am J Otol. 7: 476-477, 1986.
66. Shambaugh GE Jr. Zinc. The neglected nutrient. Am J Otol. 10: 156-160, 1989.
67. Shambaugh GE. Zinc, an essential nutrient for hearing and balance. Int J Biosocial Med Res. 13: 192-199, 1991.
68. Simkin PA. Oral zinc sulphate in rheumatoid arthritis. Lancet ii: 539-42, 1976.
69. Simkin PA. Treatment of Rheumatoid Arthritis with Oral Zinc Sulfate. Agents and Actions; (suppl.) 8: 587-95, 1981.
70. Sturniolo GC, Montino MC, Rossetto L et al. Inhibition of gastric acid secrecion reduces zinc absorption in man. J Am Col Nutr 4: 372-375, 1991.
71. Svenson KL et al. Reduced zinc in peripheral blood cells from patients with inflammatory connective tissue diseases. Inflammation 9; 2: 189-99, 1985.
72. Takihara H, Cosentino MJ, Cockett AT. Effect of low-dose androgen and zinc sulfate on sperm motility and seminal zinc levels in infertile men. Urology 22: 160, 1983.
73. Taper LJ, Oliva JT, Ritchey SJ. Zinc and copper retention during pregnancy. The adequacy of prenatal diets with and without dietary supplementation. Am J Clin Nutr 41: 1184-1192, 1985.
74. Taylor CM, Bacon JR, Aggett PJ et al. Homeostatic regulation of zinc absorption and endogenous losses in zinc-deprived men. Am J Clin Nutr 53: 755-763, 1991.
75. Thomas EA, Bailey LB, Kauwell GA et al. Erythrocyte metallothionein response to dietary zinc in humans. J Nutr 122: 2408-2414, 1992.
76. Tuormaa TE. Adverse effects of zinc deficiency. A review from the literature. J Orthomol Med 10: 149-164, 1995.
77. Ulshafer RJ. Zinc content in melanosomes of degenerating RPE as measured by X-ray maping. Prog Clin Biol Res 314:131-9, 1989.
78. Wagner PA, Bailey LB, Christakis GJ, Dinning JS. Serum zinc concentrations in adolescents as related to sexual maturation. Human Nutr. Clin Nutr 39C: 459, 1985.
79. Zlotkin SH, Casselman CW. Urinary zinc excretion in normal subjects. J Trace Elem Exp Med. 3: 13-21, 1990.

 

Sources:
Joseph E. Pizzorno Jr., Michael T. Murrey & Melvyn R. Werbach.